

Installation and Operation Manual

X-DPT-DeviceNet-SLA7000-RT-eng

Part Number: 541B061AHG

March, 2008

Supplemental Manual for Brooks® DeviceNet™ MFC/RTs

For SLA7000 Series

Essential Instructions

Read this page before proceeding!

Brooks Instrument designs, manufactures and tests its products to meet many national and international standards. Because these instruments are sophisticated technical products, you must properly install, use and maintain them to ensure they continue to operate within their normal specifications. The following instructions must be adhered to and integrated into your safety program when installing, using and maintaining Brooks Products.

- Read all instructions prior to installing, operating and servicing the product. If this instruction manual is not the correct manual, please see back cover for local sales office contact information. Save this instruction manual for future reference.
- If you do not understand any of the instructions, contact your Brooks Instrument representative for clarification.
- Follow all warnings, cautions and instructions marked on and supplied with the product.
- Inform and educate your personnel in the proper installation, operation and maintenance of the product.
- Install your equipment as specified in the installation instructions of the appropriate instruction manual and per applicable local and national codes. Connect all products to the proper electrical and pressure sources.
- To ensure proper performance, use qualified personnel to install, operate, update, program and maintain the product.
- When replacement parts are required, ensure that qualified people use replacement parts specified by Brooks Instrument.
- Unauthorized parts and procedures can affect the product's performance and place the safe operation of your process at risk. Look-alike substitutions may result in fire, electrical hazards or improper operation.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.

ESD (Electrostatic Discharge)

CAUTION

This instrument contains electronic components that are susceptible to damage by electricity. Proper handling procedures must be observed during the removal, installation, or other handling of internal circuit boards or devices.

Handling Procedure:

1. Power to the unit must be removed.
2. Personnel must be grounded, via a wrist strap or other safe, suitable means before any printed circuit card or other internal device is installed, removed or adjusted.
3. Printed circuit cards must be transported in a conductive container. Boards must not be removed from protective enclosure until immediately before installation. Removed boards must immediately be placed in protective container for transport, storage or return to factory.

Comments:

This instrument is not unique in its content of ESD (electrostatic discharge) sensitive components. Most modern electronic designs contain components that utilize metal oxide technology (NMOS, SMOS, etc.). Experience has proven that even small amounts of static electricity can damage or destroy these devices. Damaged components, even though they appear to function properly, exhibit early failure.

Installation and Operation Manual

X-DPT-DeviceNet-SLA7000-RT-eng

Part Number: 541B061AHG

March, 2008

Brooks DeviceNet MFC-RTs

Dear Customer,

We recommend that you read this manual in its entirety as this will enable efficient and proper use of the DeviceNet MFC-RTs. Should you require any additional information concerning the DeviceNet MFC-RTs, please feel free to contact your local Brooks Sales and Service Office; see back cover for contact information, or visit us on the web at www.BrooksInstrument.com. We appreciate this opportunity to service your fluid measurement and control requirements, and trust that we will be able to provide you with further assistance in future.

Yours sincerely,

Brooks Instrument

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

Contents

1. Introduction.....	3
-----------------------------	----------

2. Before Starting.....	3
--------------------------------	----------

2.1. Background & Assumptions	3
2.2. Compliance.....	3
2.3. Notations.....	3
2.3.1. Numbers	3
2.3.2. EPATH.....	3

3. Quick Start.....	3
----------------------------	----------

3.1. Step 1: Set Baud Rate and MAC ID	3
3.1.1. Baud Rate.....	3
3.1.2. MAC ID	3
3.2. Step 2: Configure Scanner	3
3.3. Step 3: Plumb to the Device	3
3.4. Step 4: Connect Device to the Network	3
3.4.1. Interface Connector	3
3.4.2. Remote Transducer Connector	3
3.5. Step 5: Apply Power to the Network.....	3
3.6. Step 6: LED Verification	3
3.7. Step 7: Begin Scanning the Network.....	3
3.8. Step 7: Normal Operation.....	3

4. Configuration	3
-------------------------------	----------

4.1. Commonly Configured Attributes.....	3
4.1.1. I/O Assemblies	3
4.1.2. The “Inferred” Data Type	3
4.1.3. Data Type	3
4.1.4. Data Units.....	3
4.1.4.1. Counts	3
4.1.4.2. Common Device Data Units	3
4.1.5. Safe State (i.e. Safe Mode)	3
4.1.5.1. The State Machine and Safe Mode.....	3
4.1.5.2. Valve Safe Mode	3
4.1.5.3. Flow Sensor Safe Mode	3
4.1.6. Gas Calibration Selection.....	3

4.1.7. Pressure Application.....	3
4.2. EDS Parameter Configuration	3
4.2.1. Flow Sensor Group.....	3
4.2.2. Pressure Sensor Group.....	3
4.2.3. Sensor Safe State Values	3
4.2.4. Valve Group.....	3
4.2.4.1. Valve Safe State Values.....	3
4.2.4.2. Valve Override	3
4.2.5. Flow Control Group	3
4.2.6. Polled Connection Group	3
4.2.7. Device Info Group.....	3
4.2.8. Soft Start (Ramp) Control Group.....	3
4.2.9. Alarms/Warnings Group	3
5. Detailed Configuration	3
5.1. Multiple Sensors and Controllers	3
5.2. Details.....	3
5.3. Identity Object [0x1].....	3
5.3.1. Attributes	3
5.3.1.1. Note: Device Type	3
5.3.1.2. Note: Revision	3
5.3.1.3. Note: Status.....	3
5.3.1.4. Note: Serial Number	3
5.3.1.5. Note: Software Revision Level	3
5.3.1.6. Note: Diagnostic Codes.....	3
5.3.2. Services	3
5.3.2.1. Service Details.....	3
5.3.2.1.1. Reset	3
5.4. Message Router Object [0x2]	3
5.4.1. Attributes	3
5.4.2. Services.....	3
5.4.3. Service Details.....	3
5.5. DeviceNet Object [0x3].....	3
5.5.1. Rules Governing Master/Slave Connections.....	3
5.5.2. Attributes	3
5.5.2.1. Note: MAC ID	3
5.5.2.2. Note: Baud Rate.....	3
5.5.2.3. Note: MAC ID Switch Changed.....	3
5.5.2.4. Note: Baud Rate Switch Changed.....	3
5.5.2.5. Note: BOI.....	3
5.5.2.6. Note: Allocation Information	3

5.5.3. Services	3
5.5.4. Service Details.....	3
5.5.4.1. Allocate Master/Slave Connection	3
5.5.4.2. Release Master/Slave Connection	3
5.6. Assembly Object [0x4].....	3
5.6.1. Attributes	3
5.6.2. Services.....	3
5.6.3. Service Details.....	3
5.7. Connection Object [0x5]	3
5.7.1. Rules Governing Master/Slave Connections [0x5].....	3
5.7.2. Attributes	3
5.7.2.1. Explicit Connection Attributes.....	3
5.7.2.2. Poll I/O Connection Attributes	3
5.7.2.3. Acknowledged Connection.....	3
5.7.2.4. Unacknowledged Connection.....	3
5.7.2.5. Note: State.....	3
5.7.2.6. Note: Transport Class & Trigger.....	3
5.7.2.7. Note: Initial Comm. Characteristics	3
5.7.2.8. Note: Watchdog Timeout Action.....	3
5.7.3. Services.....	3
5.7.4. Service Details.....	3
5.8. Acknowledge Handler Object [0x2B].....	3
5.8.1. Attributes	3
5.8.2. Services.....	3
5.8.3. Service Details.....	3
5.9. S-Device Supervisor Object [0x30]	3
5.9.1. Attributes	3
5.9.1.1. Note: Software Revision Level	3
5.9.1.2. Note: Device Status.....	3
5.9.1.3. Note: Exception Status	3
5.9.1.4. Note: Exception Detail Alarm – Common Exception Detail	3
5.9.1.5. Note: Exception Detail Alarm – Device Exception Detail	3
5.9.1.6. Note: Exception Detail Alarm – Manufacturer Exception Detail	3
5.9.1.7. Note: Exception Detail Warning – Common Exception Detail	3
5.9.1.8. Note: Exception Detail Warning – Device Exception Detail	3
5.9.1.9. Note: Exception Detail Warning – Manufacturer Exception Detail.....	3
5.9.2. Services	3
5.9.2.1. Service Details.....	3
5.9.2.1.1. Perform Diagnostics	3

5.10. S-Analog Sensor Object [0x31].....	3
5.10.1. Attributes	3
5.10.1.1. Note: Data Type	3
5.10.1.2. Note: Data Units	3
5.10.1.3. Note: Status.....	3
5.10.1.4. Note: Full Scale	3
5.10.1.5. Note: Offset-A and Gain	3
5.10.1.6. Note: Safe State	3
5.10.1.7. Note: Produce Trigger Delta.....	3
5.10.1.8. Note: Gas Calibration Object Instance.....	3
5.10.1.9. Note: Pressure Application Instance	3
5.10.1.10. Note: Produce Trigger Delta Type.....	3
5.10.1.11. Note: Alarms.....	3
5.10.1.12. Note: Warnings.....	3
5.10.1.13. Note: Compensated Sensor Temperature Structure.....	3
5.10.1.14. Note: Full-Scale Structure	3
5.10.2. Services	3
5.10.2.1. Service Details.....	3
5.10.2.1.1. Set Full Scale Counts.....	3
5.11. S-Analog Actuator Object [0x32].....	3
5.11.1. Attributes	3
5.11.1.1. Note: Data Type	3
5.11.1.2. Note: Data Units	3
5.11.1.3. Note: Override	3
5.11.1.4. Note: Valve	3
5.11.1.5. Note: Status.....	3
5.11.1.6. Note: Safe State	3
5.11.1.7. Note: Alarms.....	3
5.11.1.8. Note: Warnings.....	3
5.11.2. Services	3
5.11.2.1. Service Details.....	3
5.12. S-Single Stage Controller Object [0x33].....	3
5.12.1. Attributes	3
5.12.1.1. Note: Data Type	3
5.12.1.2. Note: Data Units	3
5.12.1.3. Note: Status.....	3
5.12.1.4. Note: Alarms.....	3
5.12.1.5. Note: Warnings	3
5.12.1.6. Note: Ramp Rates.....	3
5.12.1.7. Note: PID Gains.....	3
5.12.2. Services	3
5.12.2.1. Service Details.....	3

5.13. S-Gas Calibration Object [0x34].....	3
5.13.1. Attributes	3
5.13.1.1. Note: Gas Standard Number.....	3
5.13.1.2. Note: Gas Correction Factor	3
5.13.1.3. Note: Gas Correction Type.....	3
5.13.1.4. Note: Customer Full Scale	3
5.13.2. Services	3
5.13.2.1. Service Details.....	3
5.13.2.1.1. Get All Instances	3
6. Troubleshooting	3
7. Appendix	3
7.1. Appendix A - Assembly Object Detail.....	3
7.2. Assembly Details	3
7.3. Appendix B - Data Type Definitions	3
7.4. Appendix C – Data Units	3
7.5. Appendix D - LED Flash Codes.....	3
7.6. Appendix E – Service Summary and Details.....	3
7.7. Appendix F - State.....	3
8. Glossary	3

Tables

Table 3-1 I/O Data Description	3
Table 3-2 *Status	3
Table 3-3 **Flow	3
Table 3-4 ***Setpoint	3
Table 4-1 Commonly Configured Attributes/Parameters.....	3
Table 4-2 Attributes to Configure Default Assemblies.....	3
Table 4-3 Configurable Data Type Attributes	3
Table 4-1 Configurable Data Units Attributes	3
Table 4-2 Safe State.....	3
Table 4-3 Safe Value	3
Table 4-4 Parameter Groups.....	3
Table 4-5 Supported Flow Sensor Parameters	3
Table 4-6 Supported Pressure Sensor Parameters	3
Table 4-7 Sensor Safe State Values	3
Table 4-8 Supported Valve Parameters	3
Table 4-9 Valve Safe State Values.....	3
Table 4-10 Valve Override Values.....	3
Table 4-11 Supported Control Parameters	3
Table 4-12 Polled Connection Values	3
Table 4-13 Supported Device Info Parameters	3
Table 4-14 Supported Soft Start Parameters	3
Table 4-15 Alarms/Warnings	3
Table 5-1 Accessible Classes	3
Table 5-2 Identity Object Instance 0 Attributes	3
Table 5-3 Identity Object Instance 1 Attributes	3
Table 5-4 Identity Object [0x1] Status	3
Table 5-5 Daughter Board Diagnostic Codes.....	3
Table 5-6 Identity Object Instance 0 Services	3
Table 5-7 Identity Object Instance 1 Services	3
Table 5-8 Reset Service Arguments.....	3
Table 5-9 Reset Service Response.....	3
Table 5-10 Message Router Instance 0 Attributes	3
Table 5-11 Message Router Instance 1 Attributes	3
Table 5-12 Message Router Instance 0 Services	3
Table 5-13 Message Router Instance 1 Services	3
Table 5-14 DeviceNet Object Instance 0 Attributes	3
Table 5-15 DeviceNet Object Instance 1 Attributes	3
Table 5-16 Baud Rate Values	3
Table 5-17 BOI Values	3
Table 5-18 Allocation Information.....	3
Table 5-19 DeviceNet Object Instance 0 Services	3
Table 5-20 DeviceNet Object Instance 1 Services	3
Table 5-21 Allocate Service Arguments	3
Table 5-22 Allocation Choice Byte Values	3
Table 5-23 Allocate Service Response	3
Table 5-24 Release Service Arguments.....	3
Table 5-25 Release Choice Byte Value.....	3

Table 5-26 Release Service Response	3
Table 5-27 Assembly Object Instance 0 Attributes	3
Table 5-28 Assembly Object Instance 1..n Attributes	3
Table 5-29 Assembly Object Instance 0 Services	3
Table 5-30 Assembly Object Instance 1..n Services	3
Table 5-31 Connection Object Instance 0 Attributes	3
Table 5-32 Instance 1 - M/S Explicit Connection Attributes	3
Table 5-33 Instance 2 - M/S Polled I/O Connection Attributes	3
Table 5-34 Instance 4 - M/S COS/Cyclic I/O Connection (Acknowledged)	3
Table 5-35 Instance 4 - M/S COS/Cyclic Connection (Unacknowledged)	3
Table 5-36 Rules Governing Master/Slave Connections [0x5]	3
Table 5-37 Bit Descriptions	3
Table 5-38 Direction	3
Table 5-39 Production Trigger	3
Table 5-40 Transport Class	3
Table 5-41 Bit Descriptions	3
Table 5-42 Initial Production Characteristics	3
Table 5-43 Initial Consume Characteristics	3
Table 5-44 Watchdog Timeout Action	3
Table 5-45 Connection Object Instance 0 Services	3
Table 5-46 Connection Object Instance 1 Services	3
Table 5-47 Acknowledge Handler Instance 0 Attributes	3
Table 5-48 Acknowledge Handler Instance 1 Attributes	3
Table 5-49 Acknowledge Handler Instance 0 Services	3
Table 5-50 Acknowledge Handler Instance 1 Services	3
Table 5-51 S-Device Supervisor Instance 0 Attributes	3
Table 5-52 S-Device Supervisor Instance 1 Attributes	3
Table 5-53 Device Status	3
Table 5-54 Exception Status	3
Table 5-55 Alarm – Common Exception Detail	3
Table 5-56 Alarm – Device Exception Detail	3
Table 5-57 Alarm – Manufacturer Exception Detail	3
Table 5-58 Warning – Common Exception Detail	3
Table 5-59 Warning – Device Exception Detail	3
Table 5-60 Warning – Manufacturer Exception Detail	3
Table 5-61 S-Device Supervisor Instance 0 Services	3
Table 5-62 S-Device Supervisor Instance 1 Services	3
Table 5-63 Diagnostics Service Arguments	3
Table 5-64 Test ID	3
Table 5-65 Diagnostic Service Response	3
Table 5-66 S-Analog Sensor Instance 0 Attributes	3
Table 5-67 S-Analog Sensor Instance 1 Attributes	3
Table 5-68 Status	3
Table 5-69 Pressure Status Instance 2	3
Table 5-70 Full Scale	3
Table 5-71 Safe State	3
Table 5-72 Produce Trigger Delta Type	3
Table 5-73 Pressure Full-Scale Structure	3
Table 5-74 S-Analog Sensor Instance 0 Services	3
Table 5-75 S-Analog Sensor Instance 1 Services	3

Table 5-76 Set Full-Scale Counts Service Arguments	3
Table 5-77 Set Full-Scale Counts Service Response	3
Table 5-78 S-Analog Actuator Instance 0 Attributes	3
Table 5-79 S-Analog Actuator Instance 1 Attributes	3
Table 5-80 Override	3
Table 5-81 Status	3
Table 5-82 Safe State	3
Table 5-83 S-Analog Actuator Instance 0 Services	3
Table 5-84 S-Analog Actuator Instance 1 Services	3
Table 5-85 S-Single Stage Controller Instance 0 Attributes	3
Table 5-86 S-Single Stage Controller Instance 1 Attributes	3
Table 5-87 Status	3
Table 5-88 S-Single Stage Controller Instance 0 Services	3
Table 5-89 S-Single Stage Controller Instance 1 Services	3
Table 5-90 S-Gas Calibration Instance 0 Attributes	3
Table 5-91 S-Gas Calibration Instance 1..n Attributes	3
Table 5-92 Gas Correction Type	3
Table 5-93 S-Gas Calibration Instance 0 Services	3
Table 5-94 S-Gas Calibration Instance 1..n Services	3
Table 5-95 Get All Instances Arguments	3
Table 5-96 Get All Instances Response	3
Table 7-1 Summary Table of Input Assemblies	3
Table 7-2 Summary Table of Output Assemblies	3
Table 7-3 Input Assembly 1	3
Table 7-4 Input Assembly 2	3
Table 7-5 Input Assembly 3	3
Table 7-6 Input Assembly 4	3
Table 7-7 Input Assembly 5	3
Table 7-8 Input Assembly 6	3
Table 7-9 Output Assembly 7	3
Table 7-10 Output Assembly 8	3
Table 7-11 Input Assembly 13	3
Table 7-12 Input Assembly 14	3
Table 7-13 Input Assembly 15	3
Table 7-14 Input Assembly 16	3
Table 7-15 Input Assembly 17	3
Table 7-16 Input Assembly 18	3
Table 7-17 Output Assembly 19	3
Table 7-18 Output Assembly 20	3
Table 7-19 Input Assembly 100	3
Table 7-20 Input Assembly 101	3
Table 7-21 Output Assembly 102	3
Table 7-22 Output Assembly 103	3
Table 7-23 Data Types	3
Table 7-24 Volumetric Flow Units	3
Table 7-25 Mass Flow Units	3
Table 7-26 Pressure Units	3
Table 7-27 Pressure Units	3
Table 7-28 NET LED Flash Codes	3
Table 7-29 MOD LED Flash Codes	3

Table 7-30 Get Attribute Single Service Parameters	3
Table 7-31 Success Response Data	3
Table 7-32 Set Attribute Single Service Parameters	3
Table 7-33 Success Response Data	3
Table 7-34 S-Device Supervisor State Event Matrix	Error! Bookmark not defined.

Figures

Figure 3-1 Baud Rate Switch.....	3
Figure 3-2 MAC ID Switches	3
Figure 3-3 Interface Connector.....	3
Figure 3-4 Remote Transducer Connector.....	3
Figure 3-5 View Showing Top of MFC-RT Can.....	3
Figure 7-1 S-Device Supervisor State Machine Diagram.....	3

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

1. Introduction

Many applications of Flow Meters/Controllers and Pressure devices are moving to increasing the use of automation. Automation comes in many forms: PLC's (Programmable Logic Controllers such as Allen-Bradley's SLC500), DCS's (Distributed Control Systems, such as Emerson's Delta V), and PC-based solutions (National Instrument's Labview™). Digital communications from these varied automation systems and the devices they measure and control are a very effective means of not only accomplishing more effective and rapid system integration, but also providing greatly improved system diagnostics and maintainability. DeviceNet™ is an open digital protocol capable of high speeds and easy system connectivity. Brooks Instrument has several of its devices available on this popular networking standard, and is a member of ODVA™ (Open DeviceNet Vendors Association), the governing standard body for DeviceNet.

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

2. Before Starting

2.1. Background & Assumptions

This manual is a supplement to the SLA7000 Series Mass Flow Controller Operation Manual. It is assumed that the owner of this SLA7000 Series MFC-RT is thoroughly familiar with the theory and operation of a SLA7000 Series MFC-RT. If not, it is recommended that the owner read the Operations Manual first before continuing with this supplement.

This manual assumes a basic knowledge and understanding of the DeviceNet protocol, its topology and its method of logically accessing the data or parameters contained within a device. This manual also assumes basic knowledge and understanding regarding the operation of Mass Flow Controllers/Meters and Pressure Controllers/Meters. This manual is not intended to be a replacement to the ODVA (Open DeviceNet Vendors Association) specification, which is still the authoritative definition and description of DeviceNet communications. It is recommended, but not required for the purposes of this manual, that the user obtain a copy of the DeviceNet specification from ODVA (<http://www.odva.org/>).

This manual does not make any assumptions about any particular manufacturer of equipment or custom software used by the user to communicate with the Brooks device, but assumes the user has thorough understanding of such equipment and any configuration software.

2.2. Compliance

The SLA7000 Series Mass Flow Controller with Remote Transducer (MFT-RT) conforms to the ODVA standards as a Vendor Specified Device Profile adapted to a Mass Flow Controller with Remote Pressure Sensing. The SLA7000 Series MFC-RT device has been operationally certified by ODVA at the Conformance Test Lab in Ann Arbor, Michigan. The test verified that the device conforms to all specifications required of a DeviceNet capable device, the Vendor Specific Device Profile for an MFC-RT and its supporting objects.

2.3. Notations

This section details notations and conventions used throughout the manual. It is recommended that the reader become very familiar with these conventions. Hypertext links are used in the manual to assist in navigating. This manual is best viewed in its electronic form and can be obtained from the Brooks Customer Service Department (215) 362-3700 in Adobe® Acrobat® PDF format. A glossary is provided for reference in Section 8: Glossary to aid in reviewing and/or to define any unfamiliar terms.

2.3.1. Numbers

Numeric values used throughout this manual will be clearly denoted as to the base numeric system it represents. All hexadecimal number (base 16) will be prefixed with a 0x, like 0xA4. All binary numbers (base 2) will be suffixed with a b, like 1001b. All other numbers not annotated this way will be assumed decimal (base 10).

2.3.2. EPATH

EPATH's will be denoted within brackets [], like [0x31, 1, 3], which represents, left to right, the Class ID (hexadecimal), Instance ID (decimal), and Attribute ID (decimal).

3. Quick Start

This section assumes the owner of the SLA7000 Series device has a fully operational and trouble-free communications network with appropriate power supplies as defined in the DeviceNet specification. This section also assumes that there exists, connected to the network, a “master” type of device with Poll I/O scanning capability (generally this is the most common application for a DeviceNet network).

3.1. Step 1: Set Baud Rate and MAC ID

Two sets of switches are provided for setting the communication baud rate and for setting the MAC ID of the device. The default MAC-ID is 63. Set these switches on the MFC-RT(s) to the desired values.

3.1.1. Baud Rate

The switch labeled “RATE” sets the baud rate of the MFC-RT. Possible values along with their corresponding label are (see figure below): “1” = 125K baud, “2” = 250K baud, and “5” = 500K baud, “P” = Software programmable where DeviceNet communications may be used to set the baud rate to one of the above values. The out-of-box default setting is 500K baud.

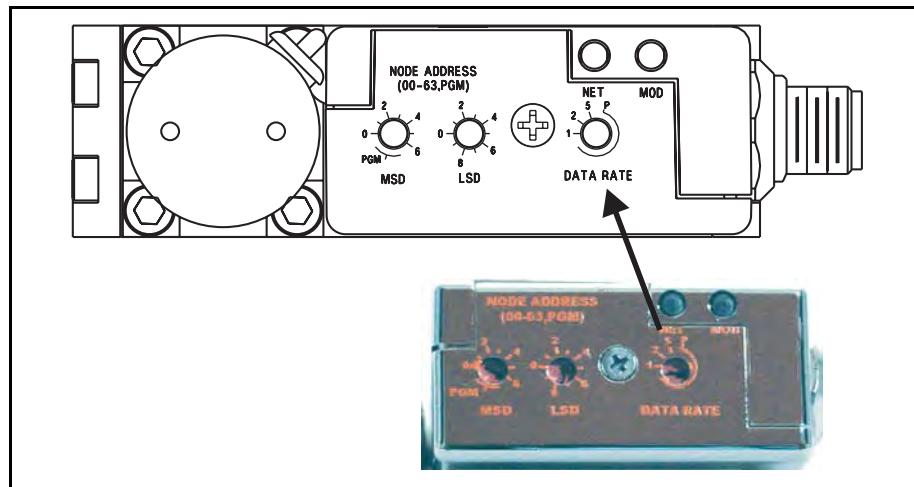


Figure 3-1 Baud Rate Switch

3.1.2. MAC ID

Two switches labeled with “MODE ADDRESS” are used to configure the MAC ID of the device. MAC ID stands for Media Access Control Identifier and is used to set the unique address of the device on the network. The possible range of addresses is 00 to 63¹.

The switch labeled “MSD” is used to set the most significant digit of the address: 00, 10, 20, 30, ..., etc. up to 60. If “MSD” is set in the range labeled as “P” this indicates the MAC ID of the device is software programmable and must be set through the network.

The switch labeled “LSD” sets the least significant digit of the MAC ID. The out-of-box default setting for the MAC ID is 63.

¹ MAC Id 63 is reserved by ODVA as a commissioning node address and should not be used operationally during the execution of a process.

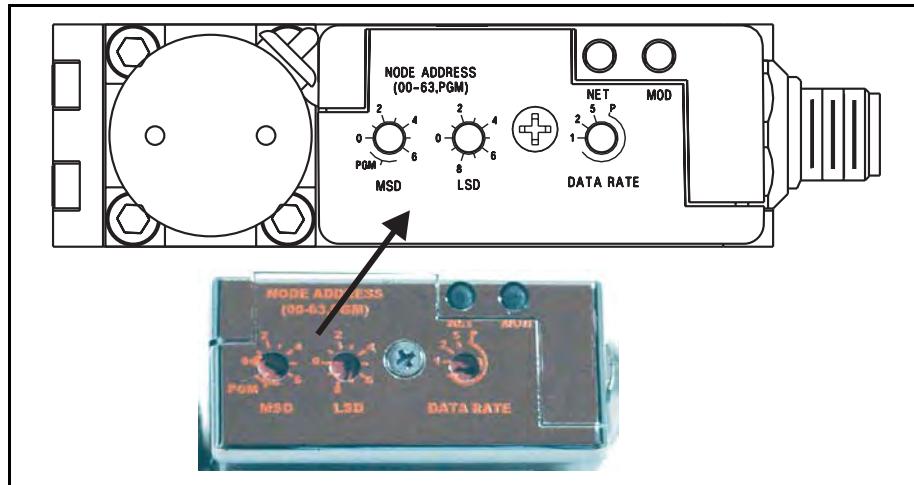


Figure 3-2 MAC ID Switches

NOTE:

Any changes made to the MAC ID or Baud Rate values, either by externally setting them or through software, will not take effect until the device has been power cycled.

3.2. Step 2: Configure Scanner

This section contains information that will be needed to configure the scanning device (e.g. PLC, PC, DCS). You will need to consult the documentation for these systems for proper configuration to the device configuration information below.

The SLA7000 Series MFC-RT comes from the factory with a default configuration as defined by the MFC-RT Device Profile. The table below lists attributes that are of the most interest to owners of this type of device and the factory configured default values. For more information on all the supported attributes in the device, see Section 5 Detailed Configuration.

NOTE:

If you ordered your SLA7000 Series MFC-RT and requested that the Factory pre-configure the device per your own custom specification, the following tables may not apply.

The default assemblies used for Poll I/O communications.

Table 3-1 I/O Data Description

Input Assembly		Output Assembly	
Assembly Instance	2	7	
Data Size	3 bytes	2 bytes	
Assembly Type	Input	Output	
Definition of Bytes			
Byte 0	Status*	Byte 0	Setpoint***
Byte 1	Flow**	Byte 1	
Byte 2			

An 8-bit bitfield whose bits have the following definition.

Table 3-2 *Status

Bit	Description
0	Common Alarms
1	Device Profile Specific Alarms
2	Manufacturer Specific Alarms
3	0
4	Common Warnings
5	Device Profile Specific Warnings
6	Manufacturer Specific Warnings
7	1 (Extended Reporting Enabled)

A 16-bit signed integer (-32768 to 32767) to represent flow in data units of counts¹.

¹ The Data Units Counts is a dimensionless unit that defines a range of numbers to represent a quantity. See Configuration Section for more information on Data Units counts.

The numeric range definitions for Flow are:

*Table 3-3 **Flow*

Counts Range	< 0	0 – 24576	24577 - 27033	27034 - 32767
Flow	Reverse Flow	0% to 100% of Full Scale	100+% to 110% of Full Scale	110+% to 133% of Full Scale

A 16-bit signed integer (-32768 to 32767) to represent the setpoint value in data units of counts¹.

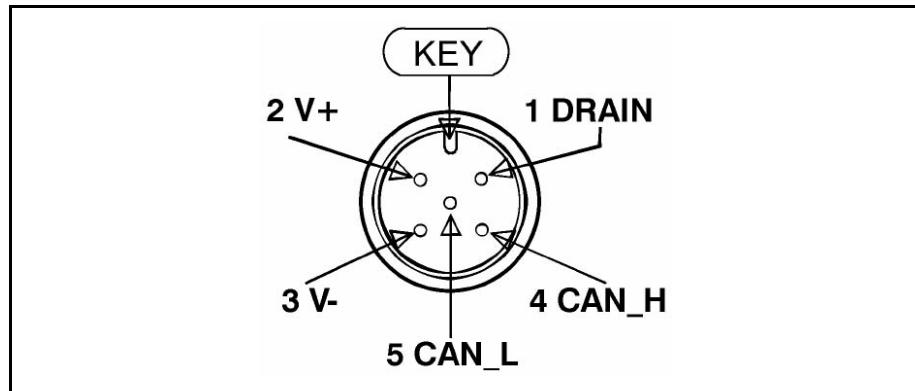
The numeric range definitions for Setpoint are:

*Table 3-4 ***Setpoint*

Counts Range	< 0	0 – 24576	24577 -27033	25734 - 32767
Setpoint	Not Valid. The minimum value for setpoint will be clamped to 0% of Full Scale	0% to 100% of Full Scale	100+% to 110% of Full Scale	Not Valid. The maximum value for setpoint will be clamped to 110% of Full Scale

3.3. Step 3: Plumb to the Device

Ensure gas flow paths are provided to the inlet and outlet connectors of the MFC-RT. Ensure pressures are per the specifications stated on the purchase order for the device (or the calibration data sheet shipped with the device).


3.4. Step 4: Connect Device to the Network

Connect the device to the network by attaching the network cable to the DeviceNet Micro connector on the side of the device. Connect the remote transducer cable to the three pin connector located on either the top the can or under the DeviceNet Micro connector. If power has already been applied to the network, go to Step 6.

¹ The Data Units Counts is a dimensionless unit that defines a range of numbers to represent a quantity. See Configuration Section for more information on Data Units counts.

3.4.1. Interface Connector

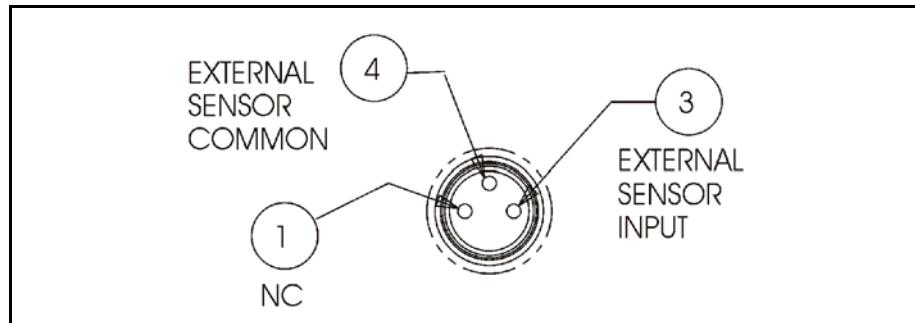
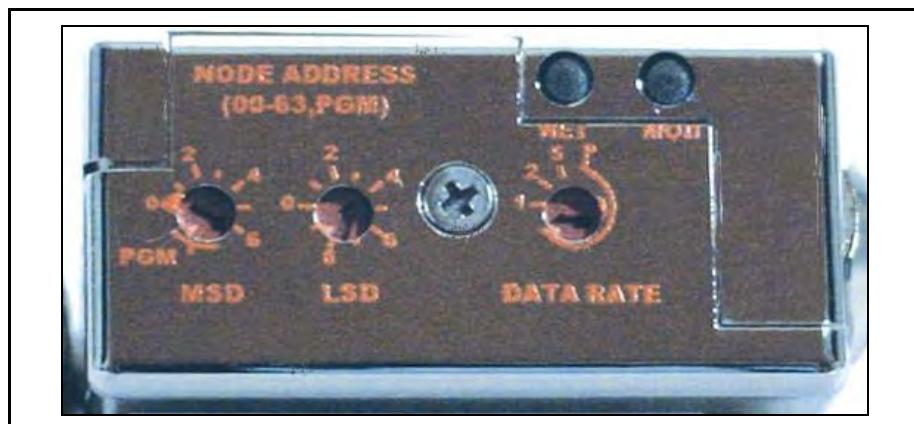

Power and network signals are interfaced to the MFC-RT through the standard 5-pin "micro" connector on the device. This connector is specified in the DeviceNet Specification, Vol. 1, Appendix C-5, Errata 5 and is defined as a male, sealed, micro-style connector. The figure below illustrates the electrical connections to the device.

Figure 3-3 Interface Connector

3.4.2. Remote Transducer Connector

The Remote Transducer signal is interfaced to the MFC-RT through a standard three pin micro connector on either the top of the device or directly under the DeviceNet connector. The figure below illustrates the electrical connections to the device.


Figure 3-4 Remote Transducer Connector

3.5. Step 5: Apply Power to the Network

A DeviceNet network is powered by a (nominal) +24 VDC supply. Ensure that your network is properly powered per the ODVA specifications. Reference DeviceNet Specification Volume 1, Appendix F, Errata 5 for power supply specification.

3.6. Step 6: LED Verification

Two LED's are provided to indicate network status and module status, labeled "NET" and "MOD" respectively. Appendix D provides a table of flash codes for each of the LED's.

Figure 3-5 View Showing Top of MFC-RT Can.

When power is applied to the device, each LED will flash red, then green a minimum of one time. This is a LED verification test. If this does not occur, go to the Troubleshooting section.

Next the MOD LED ("Module" Status) will then begin to flash red/green indicating that the device is self-testing. When all internal tests have passed, approximately 20 to 30 seconds depending on device type, the MOD LED will turn solid green. If this does not occur, go to the Troubleshooting section.

The NET LED ("Network" Status) will remain off until another node is connected to the network and completes a Duplicate MAC ID check. This implies that under normal operating conditions after the initial NET LED power on sequence has completed the lonely node will never turn on its NET LED.

Once the device is connected to a network of devices the NET LED ("Network" Status) should flash green. This will indicate that the device MAC ID and Baud Rate are configured properly and the device recognizes the network. It is now capable of establishing "connections." Proceed to Step 7.

If the NET LED is solid green, an active connection has now been established to the device. Proceed to Step 7.

If the NET LED is indicating any other status than those described above, consult Appendix D for LED flash codes or go to the Troubleshooting section.

3.7. Step 7: Begin Scanning the Network

Enable the scanner to begin scanning the network. If the NET LED on the MFC-RT goes to solid green, the scanner has connected to the MFC-RT and is now actively polling the MFC-RT. Each poll request to the MFC-RT contains a setpoint value, and each poll response from the MFC-RT contains Status and Flow information. If the NET LED does not maintain a solid green status while the scanner is actively scanning the network, consult Appendix D for LED flash codes or go to the Troubleshooting section.

3.8. Step 7: Normal Operation

During normal operation the device will change states between either the Idle or Executing states. The current state of the device can be determined by inspecting the Device Status attribute from the S-Device Supervisor Instance 1 [0x30-1-11]. A value of 2 indicates the device is in the Idle state and a value of 4 indicates the device is in the Executing state.

The device will be in its safe mode when Idle and the control loop for control type devices will be inactive. The device can be transitioned into the Executing state by either sending the S-Device Supervisor a Start service or when the first valid Poll I/O data is received.

It is important to note that the device will remain in the Idle state until a valid Poll I/O message is received. This implies that the connection can be allocated, the expected packet rate set to a valid value (transitioning the connection to the established state) and as long as the device does not receive a valid non-zero length Poll I/O Consume message, the device will stay in the Idle state. If and only if the device receives a valid non-zero length Poll I/O message, will the device transition to the Executing state.

Additionally, a device that is being communicated with via CYC or COS I/O connections exclusively will remain in the Idle state until a start service has been issued and will remain in the Executing state until after a stop service has been processed. This behavior is governed by the requirement of a connection to consume valid data before automatically transitioning the device to the executing state. A device that is configured as the master of a CYC or COS I/O connection by definition will never consume data over that connection. Consequently it is up to the user to Explicitly send a start and stop service to the device to change states.

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

4. Configuration

4.1. Commonly Configured Attributes

The SLA7000 Series MFC-RT supports many different configurable attributes. The out-of-box defaults meet the needs of a great majority of applications, but some applications may require the device to report more information or behave differently than is configured with default settings, such as valve position, safe mode, or flow and/or setpoint as real numbers in engineering units etc.

This section covers the more common attributes that are configured to meet the unique needs of applications. The terms “attribute” and “parameters” can be used interchangeably and ultimately refer to the same data item within the MFC-RT device. The term “parameter” is widely used within the EDS paradigm whereas “attribute” is used within the DeviceNet specification.

The tables will make reference to both the EDS Parameter name (if the configuration software utilizes the EDS sheet) and the EPATH descriptor (class-instance-attribute) for those who are writing custom or have other types of configuration interfaces.

The following table lists attributes/parameters that will be discussed in this section.

Table 4-1 Commonly Configured Attributes/Parameters

Attribute	EDS Parameter	EPATH	Default	Semantics
Default Polled I/O Conn. Produce Assembly Instance	Poll Prod Assy	[0x5-1-100]	2	Uses Assembly Instance 2 to Produce Data onto the network
Default Polled I/O Consume Assembly Instance	Poll Cons Assy	[0x5-1-101]	7	Uses Assembly Instance 7 to Consume Data from the network
Sensor Data Type	Flow Sensor Data Type	[0x31-1-3]	0xC3	Flow will be reported as a 16-bit signed integer
Sensor Data Type	Pressure Sensor Data Type	[0x31-2-3]	0xC3	Pressure will be reported as a 16-bit signed integer
Actuator Data Type	Valve Data Type	[0x32-1-3]	0xC3	Valve position will be reported as a 16-bit signed integer

Attribute	EDS Parameter	EPAUTH	Default	Semantics
Setpoint Data Type	Flow Control Data Type	[0x33-1-3]	0xC3	Setpoint will be a 16-bit signed integer.
Setpoint Data Type	Pressure Control Data Type	[0x33-2-3]	0xC3	Setpoint will be a 16-bit signed integer.
Sensor Data Units	Flow Sensor Data Units	[0x31-1-4]	0x1001	See Counts Description See Counts Range Values
Sensor Data Units	Pressure Sensor Data Units	[0x31-2-4]	0x1001	See Counts Description See Counts Range Values
Actuator Data Units	Valve Data Units	[0x32-1-4]	0x1001	See Counts Description See Counts Range Values
Setpoint Data Units	Flow Control Data Units	[0x33-1-4]	0x1001	See Counts Description See Counts Range Values
Setpoint Data Units	Pressure Control Data Units	[0x33-2-4]	0x1001	See Counts Description See Counts Range Values
Sensor Safe State	Flow Sensor Safe State	[0x31-1-25]	0	The sensor will report a value of 0 when device is in its Safe State
Sensor Safe State	Pressure Sensor Safe State	[0x31-2-25]	0	The sensor will report a value of 0 when device is in its Safe State
Actuator Safe State	Valve Safe State	[0x32-1-21]	0	The valve will close when device is in its Safe State
Selected Gas Calibration	Flow Sensor Gas Cal Instance	[0x31-1-35]	1	The instance of the Gas Calibration Object used to linearize the Flow Sensor
Selected Pressure Application	Pressure Application	[0x31-2-35]	1	Configures which Pressure Application Instance is currently active for this object

4.1.1. I/O Assemblies

Assemblies are a collection of attributes and are an integral part of the I/O data exchange. It is the Assembly that defines what data and how much data is exchanged between the Master and the device in an I/O type of connection. Assemblies are grouped into two categories: Input and Output.

From a device perspective, an Input Assembly is the data PRODUCED from the device ONTO the network (or can also be viewed as data “INPUT” to the Master FROM the device). Again, from a device perspective, an Output Assembly is the data CONSUMED from the network INTO the device (or can also be viewed as the data “OUTPUT” from the Master TO the device).

A selection of pre-defined Assemblies is listed in Appendix A. Once the desired Assemblies have been configured in the device, corresponding changes in configuration will probably be required from the Master side of the connection.

NOTE:

For I/O Connections to be established between Master and Slave devices the masters I/O Production data sizes must match the slaves I/O Consume data size and the masters I/O Consume data size must match the slaves Produce data size. Selection of an Assembly in the MFC-RT device automatically sets the I/O data sizes and no further configuration by the customer is required.

The table below references the parameters/attributes associated with I/O Assembly configuration.

Table 4-2 Attributes to Configure Default Assemblies

EDS Parameter	EPATH	Configures Connection Type	Valid Assembly Type	Data Size (Bytes)	Out-of Box Default
Poll Prod Assy	[0x5-1-100]	Polled	Input	3	2
Poll Cons Assy	[0x5-1-101]	Polled	Output	2	7
CYC Prod Assy	[0x5-1-102]	Cyclic	Input	3	2
COS Prod Assy	[0x5-1-104]	Change-of-State	Input	3	2

4.1.2. The “Inferred” Data Type

It is difficult to talk about I/O Assemblies without talking about Data Type since both are tied very closely together (For more detailed explanation on Data Type, see section below “Data Type”).

The Assembly Object is a collection of parameters/attributes. The purpose being that one can move a grouping of data to many attributes at one time as opposed to using individual messages to get or set each attribute. A difficulty occurs when one or more of the attributes in the Assembly have a changeable or dynamic data type. For example, the attribute Flow in the S-Analog Sensor object has data type that is dependent on the value of attribute Data Type within the same object.

The Assembly objects defined in the MFC-RT device profile are considered static, meaning that the number of bytes defined in the Assembly is the number of bytes that will be transferred, no more, no less.

Example:

S-Analog Sensor object's Data Type (Flow Sensor Data Type parameter) is configured to REAL and Assembly object Instance 1 is used to produce the flow data. The size of data type REAL is 4 bytes and therefore Flow will be reported as 4 bytes, but Assembly Instance 1 reports flow as 2 bytes. A data size mismatch/conflict has occurred. When a data size mismatch occurs, the Master device usually indicates this condition with an error.

The solution is to force the Data Type attribute (Flow Sensor Data Type parameter) to match the "inferred" data type of the Assembly instance. A mechanism is in place such that if an Assembly object has been assigned to an I/O Connection AND the I/O Connection becomes active (transitions to the Established state), the attribute/parameter that defines the data type for the particular object will be forced automatically to the inferred data type of the Assembly.

Example:

In the example above, attribute Data Type (Flow Sensor Data Type parameter) of the S-Analog Sensor Object will be changed to INT (same as the Assembly), enforcing the data size match between the Flow data and the Assembly instance.

NOTE:

While the I/O Connection is active, the Data Type parameter/attribute will have "get only" accessibility, effectively locking out any means of modifying the attribute, including the establishment of another I/O Connection, until the original I/O Connection is terminated.

4.1.3. Data Type

The Data Type of an attribute defines the way a data value is represented in the MFC-RT and transmitted across the network, such as integer and floating point. Most of the attributes defined in the MFC-RT have a static data type, meaning the data type for that attribute is defined once and never changes.

Several of the key attributes in the MFC-RT have a dynamic data type that is defined and configurable via a companion attribute. Flow in the S-Analog Sensor object (Flow Sensor Parameter) has a companion attribute to define Flow's data type. Some other key attributes with dynamic data type are Setpoint and Valve Position. It may be desirable when changing Data Units (see Data Units section below) to change also the Data Type. For example, if Flow and Setpoint are configured to represent Data Units "Percent", then Data Type INT would limit the values to whole numbers from 0 to 100. Therefore, the smallest increment of flow/setpoint would be 1. However, if Data Type was set to REAL, Flow/Setpoint could now be floating point numbers between 0.00000 to 100.000.

The following table lists objects and their attributes associated with configuring data type.

Table 4-3 Configurable Data Type Attributes

EDS Parameter	EPAUTH	Applicable Units Table	Out-of Box Default
Flow Sensor Data Type	[0x31-1-3]	Appendix B - Data Type Definitions	INT
Pressure Sensor Data Type	[0x31-2-3]	Appendix B - Data Type Definitions	INT
Valve Data Type	[0x32-1-3]	Appendix B - Data Type Definitions	INT
Flow Control Data Type	[0x33-1-3]	Appendix B - Data Type Definitions	INT
Pressure Control Data Type	[0x33-2-3]	Appendix B - Data Type Definitions	INT

NOTE:

The two data types supported by the SLA7000 Series MFC-RT for the dynamic data typed attributes are INT and REAL. An INT is a number that is represented by whole numbers ranging from 32767 to -32768. A REAL is a floating-point number ranging from 3.4E38 to -3.4E38.

4.1.4. Data Units

The SLA7000 Series MFC-RT is capable of reporting flow, pressure and accepting setpoints in values associated to engineering units. This can simplify user interpretation of information from the device by letting the device perform the calculations necessary to interpret the flow or pressure signal from its internal sensor based upon information in the selected calibration or application. Though some may be more familiar with Counts or Percent from using Analog type devices, the interpretation of Counts (see section Counts below and Range Definition in Quick Start) can vary.

The following table lists objects and their attributes associated with data units. Data Units attributes have a data type of **UINT**.

Table 4-1 Configurable Data Units Attributes

EDS Parameter	EPATH	Applicable Units Table	Out-of Box Default
Flow Sensor Data Units	[0x31-1-4]	Appendix C: Volumetric Flow Data Units Table Appendix C: Mass Flow Data Units Table	Counts
Pressure Sensor Data Units	[0x31-2-4]	Appendix C: Pressure Data Units Table	Counts
Valve Data Units	[0x32-1-4]	Appendix C: Actuator Data Units Table	Counts
Flow Control Data Units	[0x33-1-4]	Appendix C: Volumetric Flow Data Units Table Appendix C: Mass Flow Data Units Table	Counts
Pressure Control Data Units	[0x33-2-4]	Appendix C: Pressure Data Units Table	Counts

4.1.4.1. Counts

Counts define a range of number to represent 0 to 100+% of sensor value. The problem with this unit is defining what is 100%. In an SLA7000 Series, when configured to use the Data Type INT the range of numbers available to define 0-100% is -32768 to 32767. SLA7000 Series devices force 0% to be 0 Counts, and defaults 100% to 24576 Counts. This 24576 number allows for a sensor signal to be indicated as high as 133% of full scale (32767 = 133%). If the user desires to change this upper range number, a service is provided in the S-Analog Sensor object (Set Full Scale Counts) to change this value. In the MFC-RT this service is available in both instance one and two of the S-Analog Sensor object and either instance's service will adjust the value of a single attribute that is applied to both sensors.

NOTE:

If the value 32767 is used for 100%, be aware that any flow value that exceeds 100% of full scale cannot be indicated. This is a result of the limitation of a 2 byte signed integer number.

4.1.4.2. Common Device Data Units

In order to simplify the management of multiple objects with individual attributes for configuring Data Units the SLA7000 Series device will force a consistent Data Units value. Under certain conditions, upon a change of any one of the configurable Data Units attributes from Table 4.1.4-1 all objects will change to that Data Units type.

The value of Data Units will be changed for all objects in the device if any one of the objects Data Units attributes are changed to Counts or Percent. If an individual objects Data Units is changed to units other than Counts or Percent only that objects Data Units will be affected.

Example:

Upon device power up the Flow Sensor Data Units are set to SCCM, the Actuator Data Units are set to Percent and the Flow Control Data Units are set to SLM. If the Flow Sensor Data Units are changed to Counts all three objects Data Units value will be changed to Counts and their respective process variable values will be reported in Counts.

Subsequently if the Flow Sensor Data Units are set back to SCCM only the Flow Sensor Data Units will be set to SCCM and only the Flow Sensor Value will be reported in SCCM. The Actuator and Controller Data Units will remain set to Counts and their process variables values will be reported in Counts.

4.1.5. Safe State (i.e. Safe Mode)

The Safe State or Safe Mode of the devices means that the device has transitioned to a state that is considered “safe” whereby it will shut down the normal controller process and place mechanical and sensing mechanisms in the device to a safe condition (e.g., The actuator may be forced closed). The device will ignore input stimuli, such as setpoint or actuator override. In most cases, the safe mode of the device is equivalent to the operational mode when the device is not powered.

Example:

An MFC-RT with a normally closed actuator would not be able to flow gas in an un-powered state because the actuator would physically be closed and the sensor signal indicating flow would be zero. However, this is not the case with normally open valves. The safe mode defaults for normally open devices are the same as the defaults for normally closed devices.

NOTE:

Safe State indicates the condition that the sensor, actuator, and controller will be in when the device is in a particular Operational State. The Safe State condition can be configured for each of these elements by setting the appropriate Safe State attribute in each of their corresponding objects (e.g. Analog Sensor Object, Analog Actuator Object, and Single Stage Controller Object) if supported.

4.1.5.1. The State Machine and Safe Mode

All products in the SLA7000 Series product line employ an internal State Machine to govern the operation of the device. The state machine is illustrated with supporting diagrams and transition tables in Appendix F. Within each state, the device can enter a mode that defines an operational behavior. One mode in particular is the Safe Mode (a.k.a. the Safe State).

The device will be in Safe Mode when the device is in any state other than the Executing State. The Executing State can be entered in two ways: first, the establishment and subsequent exchange of non-zero length I/O data through an I/O connection, and second, a directive to the S-Device Supervisor Object using explicit messaging. Likewise, the Executing State will be exited by closing all I/O connections to the device, an I/O Connection timeout (i.e. EPR Timeout), or by a directive to the S-Device Supervisor Object. In addition, a transition out of the Executing State will occur internally by the device if a severe fault condition is detected.

The Safe Modes of the MFC-RT device is described in the below tables. The label “default” indicates the out-of-the box default defined by the MFC-RT device profile.

4.1.5.2. Valve Safe Mode

Attribute Safe State in S-Analog Actuator Object [0x32-1-21], or EDS Parameter Group Valve. These states apply to both Normally Closes and Normally Open Valves

Table 4-2 Safe State

Value	State
0	Closed(default)
1	Open
2	Hold
3	Use Safe Value

4.1.5.3. Flow Sensor Safe Mode

Attribute Safe State in S-Analog Sensor Object [0x31-1-25], or EDS Parameter Group Flow Sensor

Table 4-3 Safe Value

Value	State
0	Zero (default)
1	Full Scale
2	Hold Last Value
3	Use Safe Value
100	Track

4.1.6. Gas Calibration Selection

If the MFC-RT contains multiple calibrations, the selection of a particular calibration can be configured in attribute “Gas Calibration Object Instance” of the S-Analog Sensor Object [0x31-1-35], Parameter Flow Sensor Gas Cal Instance in the Flow Sensor group of parameters.

To obtain a list of all calibrations in the device, service 0x4B, “Get All Instances”, of the S-Gas Calibration Object [0x34] can be invoked which will return the list.

The value of this attribute is limited to the number of Flow Calibration Objects configured in the device. The minimum value is 1, which is also the default value.

4.1.7. Pressure Application

If the MFC-RT contains multiple Pressure Applications, the selection of a particular Pressure Applications can be configured in attribute “Pressure Application Instance” of the S-Analog Sensor Object [0x31-2-35], Parameter Pressure Application Instance in the Pressure Sensor group of parameters.

The value of this attribute is limited to the number of Pressure Application instances configured in the device. The minimum value is 1, which is also the default value.

NOTE: *There is not a one to one relationship between Pressure Application Instances and Gas Calibration Object Instances. A device may require a single Pressure Application that can be applied to all gas types that the flow sensor has been calibrated to, or, depending on the particular application, there may need to be attributes adjusted to a specific value to compensate for unique pressure ranges. This of course is dictated by customer requirements.*

4.2. EDS Parameter Configuration

This section describes the parameters defined in the EDS file. These parameters are grouped logically in the following categories:

Table 4-4 Parameter Groups

Group Number	Group Name	Description
1	Polled Connection	These parameters select the I/O Data Assembly to be used with the Polled I/O Connection. The attributes associated with these parameters are found in the Connection Object – Explicit Connection Instance.
2	Device Info	These are informational parameters. The attributes associated with these parameters are found in the S-Device Supervisor Object.
3	Flow Sensor	These parameters are associated with configuring the flow sensor. The attributes associated with these parameters are found in the S-Analog Sensor Object Instance 1.
4	Valve	These parameters are associated with configuring the Valve. The attributes associated with these parameters are found in the S-Analog Actuator Object.
5	Flow Control	These parameters are associated with configuring the flow control behavior. The attributes associated with these parameters are found in the S-Single Stage Controller Object Instance 1.
6	Soft-start Control	These parameters configure the soft-start control (ramping) feature of the device. The attributes associated with these parameters are found in the S-Single Stage Controller Object.
7	Alarms and Warnings	These parameters are used to enable or disable reporting of both the individual and overall device alarms and warnings. The attributes associated with these parameters are found in the S-Device Supervisor Object, both S-Analog Sensor Objects, S-Analog Actuator Object and both S-Single Stage Controller Objects.
8	Pressure Sensor	These parameters are associated with configuring the pressure sensor. The attributes associated with these parameters are found in the S-Analog Sensor Object Instance 2.
9	Pressure Control	These parameters are associated with configuring the pressure control behavior. The attributes associated with these parameters are found in the S-Single Stage Controller Object Instance 2.

4.2.1. Flow Sensor Group*Table 4-5 Supported Flow Sensor Parameters*

EDS Parameter	Values	Description	EPAUTH
Flow Sensor Data Type ^{1, 2, 3}	Appendix B - Data Type Definitions	The data type associated with reporting flow	[0x31-1-3]
Flow Sensor Data Units ²	See "Volumetric Units Table" and "Mass Units Table" in Appendix C -Data Units	The engineering units associated with reporting flow	[0x31-1-4]
Flow Sensor Safe State	See Note: Flow Sensor Safe State below	Configures the behavior of the flow sensor when the device is in Safe Mode	[0x31-1-25]
Flow Sensor Gas Cal Instance	From one up to the number of calibrations in the device	Sets the calibration curve used by the sensor to linearize the flow sensor values	[0x31-1-35]

4.2.2. Pressure Sensor Group*Table 4-6 Supported Pressure Sensor Parameters*

EDS Parameter	Values	Description	EPAUTH
Pressure Sensor Data Type ^{1, 2, 3}	Appendix B - Data Type Definitions	The data type associated with reporting pressure	[0x31-2-3]
Pressure Sensor Data Units ²	See "Pressure Units Table" in Appendix C -Data Units	The engineering units associated with reporting pressure	[0x31-2-4]
Pressure Sensor Safe State	See Note: Pressure Sensor Safe State below	Configures the behavior of the pressure sensor when the device is in Safe Mode	[0x31-2-25]
Pressure Application Instance	From one up to the number of applications in the device	Sets the calibration curve used by the sensor to linearize the pressure sensor values	[0x31-2-35]

¹ This parameter is only configurable when the device is in the Idle State (i.e. when the device is not being actively scanned/pollled).² This parameter will automatically be set based upon the inferred data type of the selected Assembly used for I/O (i.e. if the Assembly that is selected to report flow is INT, then this attribute will be automatically set to INT once I/O data exchange begins).³ The device only supports values INT and REAL. All others will be rejected.

4.2.3. Sensor Safe State Values

The following table outlines valid values for the Flow or Pressure Sensor's safe state parameter.

Table 4-7 Sensor Safe State Values

Value	State	Description
0	Zero (default)	The sensor value will be zero
1	Full Scale	The sensor value will equal Full Scale
2	Hold Last Value	The sensor value will hold to the most recent sensor reading just prior to entering the safe state
3	Use Safe Value	The sensor value will equal Safe Value attribute of the S-Analog Sensor Object
100	Track	The sensor value will continue to update normally as if in the Executing State

4.2.4. Valve Group

Table 4-8 Supported Valve Parameters

EDS Parameter	Values	Description	EPATH
Valve Data Type ^{1, 2}	Appendix B - Data Type Definitions	The data type associated with reporting valve position.	[0x32-1-3]
Valve Data Units ^{1, 2}	See the Actuator Units Table Appendix C - Data Units	The engineering units associated with reporting valve position.	[0x32-1-4]
Valve Safe State	See Note: Valve Safe State below	Configures the behavior of the valve when the device is in Safe Mode.	[0x32-1-21]
Valve Override ³	See Note: Valve Override below	Overrides the controller by commanding the valve to one of the selectable values in the table below.	[0x32-1-5]

¹ This parameter is only configurable when the device is in the Idle State (i.e. when the device is not being actively scanned/pollled).

² This parameter will automatically be set based upon the inferred data type of the selected Assembly used for I/O (i.e. if an Assembly is selected that reports valve position, and the inferred data type of the assembly is INT, then this attribute will be automatically set to INT once I/O data exchange begins)

³ This Override action only occurs when the device is in the Executing State.

4.2.4.1. Valve Safe State Values

The following table outlines valid values for the valve's safe state parameter. This table applies for normally closed and normally open valves.

Table 4-9 Valve Safe State Values

Value	State	Description
0	Closed	The valve will be driven closed and the valve position will be 0% or 0 Counts
1	Open	The valve will be driven open and the valve position will be 100% or Full Scale Counts Value
2	Hold Last Value	The valve will be driven to the last updated value just prior to the entering Safe Mode.
3	Use Safe Value	The valve will be driven to the value configured in the Safe Value attribute of the S-Analog Actuator

4.2.4.2. Valve Override ¹

The following table outlines the valid valve override types.

Table 4-10 Valve Override Values

Value	State	Description
0	Normal	Valve is under normal operational control
1	Closed	Valve is driven fully closed
2	Open	Valve is driven fully open
3	Hold	Valve is held to last updated value prior to assertion of override
4	Safe State	Valve is driven to the condition specified by Safe State

¹ This Override action only occurs when the device is in the Executing State.

4.2.5. Flow Control Group

Table 4-11 Supported Control Parameters

EDS Parameter	Values	Description	EPAUTH
Flow Control Data Type ^{1, 2}	Appendix B - Data Type Definitions	The data type associated with the value of Setpoint.	[0x33-1-3]
Flow Control Data Units ¹	See "Volumetric Units Table" and "Mass Units Table" in Appendix C - Data Units	The engineering units associated with Setpoint.	[0x33-1-4]
Flow Control Constant Time Ramp Rate	0 to 86400000 msec	Sets the time the controller will take to move from the current position to the new setpoint position	[0x33-1-19]
Flow Control Constant Slope Ramp Rate	0.0 to 3.4e38	Sets the slope (percent change per second) that the controller will use to move from the current position to the new setpoint position	[0x33-1-100]
Pressure Control Data Type _{1, 2}	Appendix B - Data Type Definitions	The data type associated with the value of Setpoint.	[0x33-2-3]
Pressure Control Data Units ₃	See "Pressure Units Table" in Appendix C - Data Units	The engineering units associated with Setpoint.	[0x33-2-4]
Pressure Control Constant Time Ramp Rate	0 to 86400000 msec	Sets the time the controller will take to move from the current position to the new setpoint position	[0x33-2-19]
Pressure Control Constant Slope Ramp Rate	0.0 to 3.4e38	Sets the slope (percent change per second) that the controller will use to move from the current position to the new setpoint position	[0x33-2-100]

¹ This parameter is only configurable when the device is in the Idle State (i.e. when the device is not being actively scanned/pollled).

² This parameter will automatically be set based upon the inferred data type of the selected Assembly used for I/O (i.e. if an Assembly is selected that contains Setpoint as one of its data members, and the inferred data type of the assembly is INT, then this attribute will be automatically set to INT once I/O data exchange begins).

4.2.6. Polled Connection Group*Table 4-12 Polled Connection Values*

Parameter	Values	Description	EPATH
Poll Prod Assy ¹	See "Summary Table of Input Assemblies" -Appendix A -Assembly Object Detail	This parameter selects the Assembly the Polled I/O Connection will use to produce data	[0x5-2-100]
Poll Cons Assy ²	See "Summary Table of Output Assemblies" -Appendix A -Assembly Object Detail	This parameter selects the Assembly that the Polled I/O Connection will use to receive data	[0x5-2-101]
CYC Prod Assy ¹	See "Summary Table of Input Assemblies" -Appendix A -Assembly Object Detail	This parameter selects the Assembly the Cyclic I/O Connection will use to produce data	[0x5-2-102]
COS Prod Assy ²	See "Summary Table of Output Assemblies" -Appendix A -Assembly Object Detail	This parameter selects the Assembly that the Change of State I/O Connection will use to produce data	[0x5-2-104]

4.2.7. Device Info Group

All values associated with this group are Read Only

Table 4-13 Supported Device Info Parameters

Parameter	Values	Description	EPATH
Device Type	"MFC-RT"	The SEMI Standard specified name which identifies the Device Model used by this device	[0x30-1-3]
SEMI Standard Rev. Level	"E54-0997"	The revision level of the SEMI S/A Network Standard to which this device complies	[0x30-1-4]
Mfr. Name	"Brooks Instrument"	The name of the manufacturer of the device	[0x30-1-5]
Mfr. Model Number		The model number of the device assigned by Brooks Instrument	[0x30-1-6]
Software Rev		The firmware revision contained in the device	[0x30-1-7]
Hardware Rev.		The hardware revision of the electronics contained in the device	[0x30-1-8]
Mfr. Serial Number		The serial number assigned to the device by Brooks Instrument	[0x30-1-9]
Device Config		Any additional configuration information related to the device	[0x30-1-10]

¹ A power cycle or reset is required for the value of this attribute to take affect.² A power cycle or reset is required for the value of this attribute to take affect.

4.2.8. Soft Start (Ramp) Control Group

These parameters are repeated for convenience from the Flow and Pressure Control Groups above.

Table 4-14 Supported Soft Start Parameters

Parameter	Values	Description	EPAUTH
Flow Control Constant Time Ramp Rate	0 to 86400000 msec	See Control Group	[0x33-1-19]
Flow Control Constant Slope Ramp Rate	0.0 to 3.4e38	See Control Group	[0x33-1-100]
Pressure Control Constant Time Ramp Rate	0 to 86400000 msec	See Control Group	[0x33-2-19]
Pressure Control Constant Slope Ramp Rate	0.0 to 3.4e38	See Control Group	[0x33-2-100]

4.2.9. Alarms/Warnings Group*Table 4-15 Alarms/Warnings*

Parameter	Values	Description	EPAUTH
Device Alarm On	True(=1) or False(=0)	Enables the reporting of individual object's alarms via the S-Device Supervisor object attributes Status[11] and Exception Detail Alarms[13].	[0x30-1-15]
Device Warning On	True(=1) or False(=0)	Enables the reporting of individual object's warnings via the S-Device Supervisor object attributes Status[11] and Exception Detail Warnings[14].	[0x30-1-16]
Flow Sensor Alarm On	True(=1) or False(=0)	Enables the reporting of alarms associated with the flow sensor via the S-Analog Sensor Object Instance one attribute Status[7]. Additionally, if the Device Alarms[15] are enabled these alarms will also be reported via the S-Device Supervisors Status[11] and Exception Detail Alarms[13].	[0x31-1-8]
Flow Sensor Warn On	True(=1) or False(=0)	Enables the reporting of warnings associated with the flow sensor via the S-Analog Sensor Object Instance one attribute Status[7]. Additionally, if the Device Warnings[16] are enabled these warnings will also be reported via the S-Device Supervisors Status[11] and Exception Detail Warnings[14].	[0x31-1-9]

Installation and Operation Manual

X-DPT-DeviceNet-SLA7000-RT-eng

Part Number: 541B061AHG

March, 2008

Section 4 - Configuration**Brooks DeviceNet MFC-RTs**

Parameter	Values	Description	EPAH
Act. Alarm On	True(=1) or False(=0)	Enables the reporting of alarms associated with the actuator via the S-Analog Actuator Object attribute Status[7]. Additionally, if the Device Alarms[15] are enabled these alarms will also be reported via the S-Device Supervisors Status[11] and Exception Detail Alarms[13].	[0x32-1-8]
Act. Warn On	True(=1) or False(=0)	Enables the reporting of warnings associated with the actuator via the S-Analog Actuator Object attribute Status[7]. Additionally, if the Device Warnings[16] are enabled these warnings will also be reported via the S-Device Supervisors Status[11] and Exception Detail Warnings[14].	[0x32-1-9]
Flow Ctrl. Alarm On	True(=1) or False(=0)	Enables the reporting of alarms associated with the flow controller via the S-Single State Controller Object Instance one attribute Status[10]. Additionally, if the Device Alarms[15] are enabled these alarms will also be reported via the S-Device Supervisors Status[11] and Exception Detail Alarms[13].	[0x33-1-11]
Flow Ctrl. Warn On	True(=1) or False(=0)	Enables the reporting of warnings associated with the flow controller via the S-Single State Controller Object Instance one attribute Status[7]. Additionally, if the Device Warnings[16] are enabled these warnings will also be reported via the S-Device Supervisors Status[11] and Exception Detail Warnings[14].	[0x33-1-12]
Pressure Sensor Alarm On	True(=1) or False(=0)	Enables the reporting of alarms associated with the pressure sensor via the S-Analog Sensor Object Instance two attribute Status[7]. Additionally, if the Device Alarms[15] are enabled these alarms will also be reported via the S-Device Supervisors Status[11] and Exception Detail Alarms[13].	[0x31-2-8]
Pressure Sensor Warn On	True(=1) or False(=0)	Enables the reporting of warnings associated with the pressure sensor via the S-Analog Sensor Object Instance two attribute Status[7]. Additionally, if the Device Warnings[16] are enabled these warnings will also be reported via the S-Device Supervisors Status[11] and Exception Detail Warnings[14].	[0x31-2-9]
Pressure Ctrl. Alarm On	True(=1) or False(=0)	Enables the reporting of alarms associated with the pressure controller via the S-Single State Controller Object Instance two attribute Status[10]. Additionally, if the Device Alarms[15] are enabled these alarms will also be reported via the S-Device Supervisors Status[11] and Exception Detail Alarms[13].	[0x33-2-11]
Pressure Ctrl. Warn On	True(=1) or False(=0)	Enables the reporting of warnings associated with the pressure controller via the S-Single State Controller Object Instance two attribute Status[7]. Additionally, if the Device Warnings[16] are enabled these warnings will also be reported via the S-Device Supervisors Status[11] and Exception Detail Warnings[14].	[0x33-2-12]

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

5. Detailed Configuration

NOTE:

This section is recommended for advance users of DeviceNet and Brooks Instrument MFC-RT products.

5.1. Multiple Sensors and Controllers

The MFC-RT is a unique device type that has the capability to report two sensor values and drive two distinct control loops. Each sensor/controller feedback loop, either flow or pressure, manages the drive signal to the devices single actuator. Only one feedback loop is active in the device at an instance in time. This feature set is contained within the physical confines of a single device.

Each control loop is driven by writing the desired setpoint value to either the Class Level Setpoint attribute [0x33, 0, 101] or by writing the setpoint value of the Active Instance of the controller object: Flow Setpoint attribute [0x33, 1, 6] or Pressure Setpoint attribute [0x33, 2, 6]. By using the Class Level Setpoint attribute during Poll I/O a single attribute can be used to drive either the flow or pressure controller with out reconfiguring the device after the Active Instance [0x33, 0, 100] has changed.

Example:

The use of the Class Level Setpoint allows the device to be controlled via a Poll I/O connection that is configured to write to a single instance of an assembly. With out this global attribute for writing the desired setpoint, each time the Active Instance of the controller is switched from flow to pressure the active Poll I/O Connection would need to be reconfigured. This would involve transitioning the Poll I/O Connection from the Established state to the Configuring state, reconfiguring the Connection to use the assembly that points to the new Active Instance of the Controller object and then finally the Connection would need to be transitioned back to the Established state. By employing a Class Level Setpoint, assemblies can point to this single instance of a setpoint attribute and avoid the necessity to deactivate a Connection in order to change the assigned assembly.

Selection of the active control loop is managed through the attribute Active Instance [0x33, 0, 100] from the S-Single Stage Controller Object. Writing a value of 1 to this attribute will cause the device to process the flow control loop. Conversely writing a value of 2 will enable the pressure control loop and disable the flow control loop.

Once the Active Instance [0x33, 0, 100] is switched from one controller to the next a sequence of events is initiated to ensure a stable transition of control. If the MFC-RT were to be commanded to switch control from flow to pressure and did nothing to internally manage this transition it is conceivable that the device would be transitioned to a stale or inadvertent setpoint value.

To eliminate ambiguity and to maintain a stable control loop the MFC-RT will read the sensor value of the targeted control instance prior to switching. It will then seed that sensor value into the new active instance of the controller in the form of an internally generated setpoint. This new value will be reported back to the user via the setpoint associated with the appropriate S-Single Stage Controller instance [0x33, X, 6] and Class Level Setpoint [0x32, 0, 101]. This data can then be read via an Explicit message.

During the Active Instance transitions there is an internal mechanism that will disable the application of setpoint values to the controller objects until after the transition to the new Active Instance is complete. After the device receives an Explicit or Poll I/O message to switch the Active Instance it will ignore any new setpoint value for approximately 150 milliseconds. Only after the seed value has been made available to the network will the device control to new requests to change setpoint. This implies setpoint values sent before the 150 millisecond Active Instance transition has elapsed will be lost. This issue must be accounted for during Explicit Messaging and Poll I/O Messaging where the Expected Packet Rate (EPR) is set to values less than 150 milliseconds.

5.2. Details

This section details all of the Classes, Instances, Attributes and Services supported by the SLA7000 Series MFC-RT. The classes detailed in the following sections can be categorized into the following functional groups to indicate what aspect of the device is being configured:

Communications

Classes in this category define how the device communicates on DeviceNet. A great majority of the information that is accessible is very well defined in the DeviceNet specification and therefore does not require much custom configuration. If the user of this device would like to do custom configuration in this category, it is strongly recommended that the user have a thorough understanding of these classes and DeviceNet protocols. More detail can be found about these classes in the DeviceNet specification.

Data Flow

Classes in this category define how data is moved to and from Application classes to the Communication classes. Again, much of what is detailed in this category is provided for informational purposes and is very limited in its ability to be customized

Application

This category of classes defines how the device is to function. In this case, the attributes in these classes configure the behavior of an MFC-RT. Of all the categories listed here, this is the most customizable.

The table below lists the classes accessible in the SLA7000 Series MFC-RT and their associated category.

Table 5-1 Accessible Classes

Class	Category	No. Of Instances	
Identity Object	[0x1]	Communications	1
Message Router Object	[0x2]	Data Flow	1
DeviceNet Object	[0x3]	Communications	1
Assembly Object	[0x4]	Data Flow	20
Connection Object	[0x5]	Communications	3
Acknowledge Handler Object	[0x2B]	Communications	1
S-Device Supervisor Object	[0x30]	Application	1
S-Analog Sensor Object	[0x31]	Application	2
S-Analog Actuator Object	[0x32]	Application	1
S-Single Stage Controller Object	[0x33]	Application	2
S-Gas Calibration Object	[0x34]	Application	1..10

In the ODVA DeviceNet specification, Instance 0 of both attributes and services are referred to as Class Level attributes and services. Instance 1 and higher are referred to as Instance Level attributes and services. This document will refer to all Levels by their instance number to avoid possible confusion.

The following details the meaning of the table heading names:

Attribute ID: The ID number of the attribute.

Name: The ODVA DeviceNet Specification label for the attribute.

Data Type: The ODVA DeviceNet Data Type for this attribute. See Appendix B for the definition of each data type.

Access Rule: “Get” means that the value of this attribute is “Read Only”. “Set” means that the value of this attribute can be read and/or written.

NV: “NV” = The value of the attribute is stored in non-volatile memory and its value will be retained after a power cycle.

V: “V” = The value of the attribute is in volatile memory and its value will be returned to default after a power cycle.

Description: A brief description of the meaning of the attribute.

Notes: Any additional notations of importance about the attribute. These notes will be found in the same section as the table.

5.3. Identity Object [0x1]

The Identity Object contains informational attributes that uniquely describe the device.

Example:

The use of attributes Vendor ID, Device Type, Product Code, and Serial Number together uniquely describe this device from any other device.

5.3.1. Attributes

Table 5-2 Identity Object Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	V	Revision of the Identity object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1–65535

Table 5-3 Identity Object Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Vendor ID	UINT	Get	NV	ID Number assigned to vendor by ODVATM	Brooks Instrument ID = 246
2	Device Type	UINT	Get	NV	Numeric identifier indicating the ODVATM Device Profile implemented by the device.	Device Type = 102 (0x66) See 'Note: Device Type' below
3	Product Code	UINT	Get	NV	Identification of a particular product of an individual vendor.	MFC-RT = 10
4	Revision	STRUCT of:	Get	NV	Revision of the device the Identity Object represents	See 'Note: Revision' below
	Major Revision	USINT				
	Major Revision	USINT				
5	Status	WORD	Get	V	Summary status of the device.	See 'Note: Status' below
6	Serial Number	UDINT	Get	NV	Serial number of device.	See 'Note: Serial Number' below
7	Product Name	Short String	Get	NV	Human readable Identification.	
100	Daughterboard Software Revision	UINT	Get	NV	Software revision of the DeviceNet daughterboard	See 'Note: Software Revision Level' below
101	Daughterboard Diagnostic Code	USINT	Get	V	Evaluation of daughterboard operation performance	See 'Note: Diagnostic Code' below

5.3.1.1. Note: Device Type

The device profile includes both an Identity and an S-Device Supervisor Objects. Both objects contain an attribute that defines the kind of device this implementation supports. In this object the Device Type is assigned a numeric value of 0x1A . This number corresponds to the device profile ID contained in the ODVA specification. This attribute should not be confused with the S-Device Supervisors Device Type attribute [0x31, 1, 3] which is represented as a DeviceNet Short String.

5.3.1.2. Note: Revision

The ODVA specification defines Major Revision as a significant change to the fit, form, or function of the product. Minor Revision is defined as changes that do not affect user configuration choices such as bug fixes, hardware component change, labeling change, etc.

5.3.1.3. Note: Status

The S-Device Supervisor object has an attribute called Device Status [0x31, 1, 11] that operates in parallel to this attribute and provides additional application information that is not available using this attribute. It is recommended that users use the S-Device Supervisor Device Status attribute for determining the status of the device. The table below defines the valid values that can be returned when reading the Identity Object Status attribute. Note that the Status attribute values are Bit oriented.

Table 5-4 Identity Object [0x1] Status

Bit	Description
0	Set to 1 when the device has been allocated.
1 – 8	Reserved, always zero
9	Minor Recoverable Fault
10	Major Recoverable Fault, S-Device Supervisor object Device Status Attribute = Critical Fault
11-15	Reserved, always zero

5.3.1.4. Note: Serial Number

This Serial Number attribute differs from the S-Device Supervisor Serial Number attribute [0x31, 1, 9] whereby the Identity Object attribute [0x01, 1, 6] is strictly a numeric value that is guaranteed to be unique by the manufacturer across all of the manufacturer's DeviceNet products. The S-Device Supervisor attribute Serial Number is a string value that should represent the manufacturers method of defining serial numbers for its products.

Furthermore the Semiconductor Special Interest Group (SemiSig) profile dictates the S-Device Supervisor Serial Number string attribute [0x31, 1, 9] and the Identity Serial Number unsigned integer attribute [0x01, 1, 6] match in value. Functionally this requirement limits the string attribute to the range of values that can be stored in an unsigned integer, 0 to 65535. The S-Device Supervisor Serial Number string attribute is defined to contain thirty characters. The string size gives the attribute a value range from 0 to 999,999,999,999,999,999,999,999,999,999. If the customer requires a string serial number series that exceeds the maximum size of an unsigned integer it is possible the two attributes will not match in value. Under these conditions the S-Device Supervisors string attribute [0x31, 1, 9] value should take precedence over the Identity objects unsigned integers [0x01, 1, 6] value.

5.3.1.5. Note: Software Revision Level

This attribute represents the current firmware revision running on the daughter board. Brooks Instrument defines the format of this revision level. The format of this attribute is comprised of two bytes. The first byte indicates the minor revision and the second byte is the major revision.

Example:

0x0301. = Minor Revision 3, Major Revision 1

5.3.1.6. Note: Diagnostic Codes*Table 5-5 Daughter Board Diagnostic Codes*

Bit	Description
1	EE Prom Fault at Boot Up
2	Error Reading Mac ID switches
3	Error Reading Baud Rate Switch
4	N/A
5	Error during Back Ground Read
6	Error during Back Ground Write
7	Unknown Interrupt from Motherboard
8	N/A

5.3.2. Services*Table 5-6 Identity Object Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-7 Identity Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x05	Reset	Resets the DeviceNet interface of the device.	See 'Service Reset' Details Below

5.3.2.1. Service Details**5.3.2.1.1. Reset***Table 5-8 Reset Service Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
Type	USINT	N	0	Emulate as closely as possible cycling power on the item the Identity Object represents. This value is the default if this parameter is omitted (default).
			1	Return as closely as possible to the out-of-box configuration, then as closely as possible emulate cycling power.

Table 5-9 Reset Service Response

Parameter Name	Data Type	Required	Parameter Value	Semantics
NO RESPONSE DATA				

5.4. Message Router Object [0x2]

The Message Router is responsible for tracking the accessibility of the Classes and Instances via the DeviceNet network. Functionally (transparent to the user), the object routes explicit messages to the various objects in the device. What can be obtained directly from this class is a list of objects that the device supports.

5.4.1. Attributes*Table 5-10 Message Router Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	GET	NV	Revision of the Message Router object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 5-11 Message Router Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Object List	STRUCT of:	Get	NV	A List of supported objects	
	Number	UINT			The number of supported classes in the class array.	
	Classes	ARRAY OF UNIT			A list of Class ID codes	

5.4.2. Services*Table 5-12 Message Router Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-13 Message Router Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

5.4.3. Service Details

NONE

5.5. DeviceNet Object [0x3]

The DeviceNet Object is responsible for maintaining and managing the DeviceNet communications interface for the device. Information concerning the MAC ID and Baud Rate of the device can be found here.

This object also is responsible for managing the pre-defined Master/Slave Connection Set. Through this object, services are provided to allocate and release connections associated with the connection set.

5.5.1. Rules Governing Master/Slave Connections

- When allocating Master/Slave connections using the Allocate service, the entire allocation request must be valid or else the allocation is rejected.
- When allocating any of the Master/Slave I/O Connections, the Explicit Connection must have already been allocated first. Or, if the Explicit Connection has not been allocated, it can be allocated in the same request as the I/O Connections.
- A Master/Slave Connection that is already allocated cannot be allocated again unless it is first released. The allocation of a Connection that has already been allocated AND not released will be considered an invalid request.
- Multiple Master/Slave Connections can be requested in the same allocation request.
- The Master/Slave Cyclic and Change of State I/O Connections are mutually exclusive and therefore cannot exist at the same time. These two connections, although different in behavior, are considered the same Connection instance.
- Once a Master has made a successful allocation request to a slave, no other Master may make allocation requests to the slave until all Master/Slave connections are released.
- Any Master may release Master/Slave connections in any Slave.
- Allocation of the Master/Slave Cyclic or Change of State I/O Connection will automatically allocate the Poll I/O Connection if the Poll I/O Connection is not already allocated.

5.5.2. Attributes

Table 5-14 DeviceNet Object Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the DeviceNet object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 5-15 DeviceNet Object Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	MAC ID	USINT	Cond.	NV	The node address of this device	See 'Note: MAC ID' below
2	Baud Rate	USINT	Cond.	NV	The communication data rate	See 'Note: Baud Rate' below
3	BOI	BOOL	Set	V	Bus Off Interrupt	See 'Note: BOI' below
4	Bus Off Counter	USINT	Set	V	Number of times CAN went to the Bus-Off-State	Range 0-255
5	Allocation Information	STRUCT of:	Get	V		
	Allocation Choice Byte	BYTE			The current Master/Slave Connection set Connections that have been allocated	See 'Note: Allocation Information' below
	Master's MAC ID	USINT			The node address of the current Master	
6	MAC ID Switch Changed	BOOL	Get	V	The Node Address Switch(es) have changed since last power-up/reset	See 'Note: MAC ID Switch changed'
7	Baud Rate Switch Changed	BOOL	Get	V	The Baud Rate Switch has changed since the last power-up/reset	See 'Note: Baud Rate Switch changed'
8	ID Switch Value	USINT	Get	V	Actual value of the Node Address switches	
9	Baud Rate Switch Value	USINT	Get	V	Actual value of the Baud Rate switch	

5.5.2.1. Note: MAC ID

The valid range of values for this attribute is 0 to 63. Setting the MAC ID switches on top of the device can configure the node address of this device. Reading this attribute will return the node address as configured by the switches. However, if switch “MSD” is placed in the range labeled “P”, the node address must be configured by setting this attribute using the Set Attribute Single service. In either case, once the MAC ID has been configured, the value is retained in non-volatile memory, and the device must be power cycled, or a Reset service must be sent to the Identity Object for the changes to take affect. If the device cannot determine what its MAC ID should be, the MAC ID defaults to 63.

NOTE:

If the “MSD” switch is not in the range labeled “P”, the Set Attribute Single service will return the error code 0x0E (“Attribute not settable”).

5.5.2.2. Note: Baud Rate

The valid values for this attribute are:

Table 5-16 Baud Rate Values

Value	Meaning
0	125
1	250
2	500

Setting the Baud Rate switch on top of the device can configure the communication’s data rate of this device. Reading this attribute will return the node address as configured by the switches. However, if the Baud Rate switch is placed in the range labeled “P”, the data rate must be configured by setting this attribute using the Set Attribute Single service. In either case, once the Baud Rate has been configured, the value is retained in non-volatile memory, and the device must be power cycled, or a Reset service must be sent to the Identity Object for the changes to take affect. If the device cannot determine what its Baud Rate should be, the device defaults to 500K.

NOTE:

If the Baud Rate switch is not in the range labeled “P”, the Set Attribute Single service will return the error code 0x0E (“Attribute not settable”).

5.5.2.3. Note: MAC ID Switch Changed

If either of the MAC ID switch positions have changed and the device has not been subsequently power cycled this attribute will be set to true. Once the device has been power cycled this attribute will return to a value of false.

5.5.2.4. Note: Baud Rate Switch Changed

If the Baud Rate switch has been changed and the device has not been subsequently power cycled this attribute will be set to true. Once the device has been power cycled this attribute will return to a value of false.

5.5.2.5. Note: BOI

This attribute configures the action that the device will take in processing the Bus Off Interrupt. Valid values are:

Table 5-17 BOI Values

Value	Meaning
0	Hold the CAN chip in its bus-off (reset) state upon detection of a bus-off indication.
1	Upon detection of a bus-off condition, if possible, fully reset the CAN chip and continue communicating.

5.5.2.6. Note: Allocation Information

Part of the information contained in this attribute indicates the Master/Slave Connections that are currently allocated and active. The table below details the bit mapping of this BYTE descriptor.

Table 5-18 Allocation Information

Bit	7	6	5	4	3	2	1	0
Description	0	Acknowledge Suppression	Cyclic	Change of State	0	0	Polled	Explicit Message

5.5.3. Services*Table 5-19 DeviceNet Object Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-20 DeviceNet Object Instance 1 Services

Service Code	Service Name	Service Description Details	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute	Appendix E: Set Attribute Single
0x4B	Allocate Master/Slave Connection	Requests the instantiation of a Master/Slave Connection	Allocate Master/Slave Connection
0x4C	Release Master/Slave Connection	Releases (deletes) a Master/Slave Connection	Release Master/Slave Connection

5.5.4. Service Details**5.5.4.1. Allocate Master/Slave Connection***Table 5-21 Allocate Service Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
Allocation Choice Byte	BYTE	Y	See Allocation Choice Byte Values Below	Selects the Master/Slave connection to be allocated (opened) in the slave device.
Allocator's MAC ID	USINT	Y	0 to 63	The MAC ID of the Master Device issuing this request

Table 5-22 Allocation Choice Byte Values

Bit	7	6	5	4	3	2	1	0
Description	0	Acknowledge Suppression	Cyclic	Change of State	0	0	Polled	Explicit Message

Table 5-23 Allocate Service Response

Parameter Name	Data Type	Required Value	Parameter	Semantics
Message Body Format	BYTE	Y		Sets the format of the Explicit Message body to be used between the Client (Master) and the slave device. This value can be ignored by the Client

5.5.4.2. Release Master/Slave Connection*Table 5-24 Release Service Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
Release Choice Byte	BYTE	Y	See Release Choice Byte Value Below	Selects the Master/Slave connection to release (close) in the slave device.

Table 5-25 Release Choice Byte Value

Bit	7	6	5	4	3	2	1	0
Description	0	Acknowledge Suppression	Cyclic	Change of State	0	0	Polled	Explicit Message

Table 5-26 Release Service Response

Parameter Name	Data Type	Required	Parameter Value	Description
NO RESPONSE DATA				

5.6. Assembly Object [0x4]

The Assembly Object contains a list of attributes that data can be written to (sink) and read from (source) via the Data Buffer attribute contained in this object. The Assembly Object is generally assigned as the endpoint of an I/O Connection object (assigned via the Path attributes in the Connection Object). In this way, multiple pieces of data can be moved to and from the device with a reduced number of network messages.

5.6.1. Attributes*Table 5-27 Assembly Object Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the Assembly object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 5-28 Assembly Object Instance 1..n Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Number of Members in List	UINT	Get	NV	Lists the number of members in this Assembly instance	
2	Member List	ARRAY of STRUCT:	Get	NV	The member list is an array of DeviceNet paths	
	Member Data Description	UINT			Size of member data	Size in bits
	Member Path Size	UINT			Size of member path	Size in bytes
	Member Path	EPATH			Path to the attribute this member points to	
3	Data Buffer	ARRAY of BYTE	Set		The data buffer to sink or source the member(s) data	The size of this attribute can be determined by adding together the Member Data Description for each member in the Assembly

5.6.2. Services*Table 5-29 Assembly Object Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-30 Assembly Object Instance 1..n Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

5.6.3. Service Details

NONE

5.7. Connection Object [0x5]**5.7.1. Rules Governing Master/Slave Connections [0x5]**

The Connection Object configures the characteristics and behavior of a logical connection in the device. A Connection is allocated (opened) in the device by the Master via the Allocate M/S Connection Request service in the DeviceNet Object. Configuration of the Connection Object attributes for the requested connection is done automatically in the device and generally need no further modification except for setting the Expected Packet Rate attribute (Attribute 9). However, it is within this object that selection of Input/Output assemblies may be configured. There are two ways to perform this configuration:

- Modification of Attribute 100 through 104 in the M/S Explicit Connection

OR

- Modification of the Produce and Consume Path attributes (Attribute 14 and 15 respectively) in the I/O Connection Objects

5.7.2. Attributes*Table 5-31 Connection Object Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the Connection object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

5.7.2.1. Explicit Connection Attributes

Table 5-32 Instance 1 - M/S Explicit Connection Attributes

Attrib ID	Name	Data Type	Access Rule	Description	Notes
1	State	USINT	Get	State of Object	Note: 'State' below Default: 3 = Established State
2	Instance Type	USINT	Get	Indicates type of Connection	Default: 0 = Explicit Connection
3	Transport Class & Trigger	USINT	Set ¹	Defines behavior of Connection Placed in CAN Identifier	Note: 'Transport Class & Trigger' below Default: 0x83
4	Produced Connection ID	UINT	Get	Placed in CAN Identifier Field when the Connection transmits	
5	Consume Connection ID	UINT	Get	CAN Identifier Field value that denotes message to be received	
6	Initial Comm Characteristics	BYTE	Get	Defines the Message Group(s) across which productions and consumptions associated with this Connection occur	Note: 'Initial Comm Characteristics' below Default: 0x21
7	Produced Connection Size	UINT	Set ¹	Maximum number of bytes transmitted across this Connection	Default: 0x0035
8	Consumed Connection Size	UINT	Get	Maximum number of bytes received across this Connection	Default: 0x0080
9	Expected Packet Rate (EPR)	UINT	Set	Defines timing associated with this Connection in milliseconds	Default: 2500 msec
12	Watchdog Timeout Action	USINT	Set	Specifies how the Connection will handle inactivity/watchdog timeouts	Note: 'Watchdog Timeout Action' below Default: 1 = Auto Delete
13	Produce Connection Path Length	UINT	Get	Number of bytes in the Produced Connection Path attribute	Default: 0
14	Produce Connection Path	EPATH	Set ¹	Specifies the application object data to be produced by this Connection	Default: Empty

¹ Settable while the connection is in the Configuring State.

Table 5-32 Instance 1 - M/S Explicit Connection Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
15	Consume Connection Path Length	UINT	Get	Number of bytes in the Consume Connection Path attribute	Default: 0
16	Consume Connection Path	EPAUTH	Set ¹	Specifies the application object to receive data by this Connection	Default: Empty
100	Default Polled I/O Conn. Produce Assembly Instance	UINT	Set	Specifies the default Assembly Object instance to be set in the Produce Connection Path when the M/S Polled I/O Connection Object is instantiated	The value of this attribute is stored in Non-Volatile memory.
101	Default Polled I/O Conn. Consume Assembly Instance	UINT	Set	Specifies the default Assembly Object instance to be set in the Consume Connection Path when the M/S Polled I/O Connection Object is instantiated	The value of this attribute is stored in Non-Volatile memory.
102	Default Cyclic I/O Conn. Produce Assembly Instance	UINT	Set	Specifies the default Assembly Object instance to be set in the Produce Connection Path when the M/S Cyclic I/O Connection Object is instantiated	The value of this attribute is stored in Non-Volatile memory.
104	Default COS I/O Conn. Produce Assembly Instance	UINT	Set	Specifies the default Assembly Object instance to be set in the Produce Connection Path when the M/S Change of State I/O Connection Object is instantiated	The value of this attribute is stored in Non-Volatile memory.

5.7.2.2. Poll I/O Connection Attributes*Table 5-33 Instance 2 - M/S Polled I/O Connection Attributes*

Attrib ID	Name	Data Type	Access Rule	Description	Notes
1	State	USINT	Get	State of Object	Note: 'State' below Default: 1 = Configuring State
2	Instance Type	USINT	Get	Indicates type of Connection	Default: 1 = I/O Connection
3	Transport Class & Trigger	USINT	Set ¹	Defines behavior of Connection	Note: 'Transport Class & Trigger' below Default: 0x82

¹ Settable while the connection is in the Configuring State.

Table 5-33 Instance 2 - M/S Polled I/O Connection Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
4	Produced Connection ID	UINT	Get	Placed in CAN Identifier Field when the Connection transmits	
5	Consume Connection ID	UINT	Get	CAN Identifier Field value that denotes message to be received	
6	Initial Comm Characteristics	BYTE	Get	Defines the Message Group(s) across which productions and consumptions associated with this Connection occur	Note: 'Initial Comm Characteristics' below Default: 0x01
7	Produced Connection Size	UINT	Set ¹	Maximum number of bytes transmitted across this Connection	Defined by the size of the Application Data object pointed to by Produce Connection Path attribute
8	Consumed Connection Size	UINT	Get	Maximum number of bytes received across this Connection	Defined by the size of the Application Data object pointed to by Produce Connection Path attribute
9	Expected Packet Rate (EPR)	UINT	Set	Defines timing associated with this Connection	Must be configured. Once this value is set, the Polled I/O Connection transitions to the Established State
12	Watchdog Timeout Action	USINT	Set	Specifies how the Connection will handle inactivity/watchdog timeouts	Note: 'Watchdog Timeout Action' below Default: 0 = Timed Out Stat
13	Produce Connection Path Length	UINT	Get	Number of bytes in the Produced Connection Path attribute	Default: 6
14	Produce Connection Path	EPATH	Set ¹	Specifies the application object data to be produced by this Connection	Default: As defined by Attribute 100 in the M/S Explicit Connection instance. This attribute is settable only in the Configuring State
15	Consume Connection Path Length	UINT	Get	Number of bytes in the Consume Connection Path attribute	Default: 6
16	Consume Connection Path	EPATH	Set ¹	Specifies the application object to receive data by this Connection	As defined by Attribute 101 in the M/S Explicit Connection instance. This attribute is settable only in the Configuring State

¹ Settable while the connection is in the Configuring State.

5.7.2.3. Acknowledged Connection

The Change of State and Cyclic connection types are mutually exclusive. When allocating this type of connection, only one or the other may be selected. The selection of Acknowledged versus Unacknowledged is also mutually exclusive. See Allocating Connections in the DeviceNet Object.

Table 5-34 Instance 4 - M/S COS/Cyclic I/O Connection (Acknowledged)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
1	State	USINT	Get	State of Object	Note: 'State' below Default: 1 = Configuring State
2	Instance Type	USINT	Get	Indicates type of Connection	Default: 1 = I/O Connection
3	Transport Class & Trigger	USINT	Get ¹	Defines behavior of Connection	Note: 'Transport Class & Trigger' below Default: Cyclic Type = 0x00 COS Type = 0x10
4	Produced Connection ID	UINT	Get	Placed in CAN Identifier Field when the Connection transmits	
5	Consume Connection ID	UINT	Get	CAN Identifier Field value that denotes message to be received	
6	Initial Comm Characteristics	BYTE	Get	Defines the Message Group(s) across which productions and consumptions associated with this Connection occur	Note: 'Initial Comm Characteristics' below Default: 0x01
7	Produced Connection Size	UINT	Set ¹	Maximum number of bytes transmitted across this Connection	Defined by the size of the Application Data object pointed to by Produce Connection Path attribute
8	Consumed Connection Size	UINT	Get	Maximum number of bytes received across this Connection	Default: 0
9	Expected Packet Rate (EPR)	UINT	Set	Defines timing associated with this Connection	Must be configured. Once this value is set, the Polled I/O Connection transitions to the Established State
12	Watchdog Timeout Action	USINT	Set	Specifies how the Connection will handle inactivity/watchdog timeouts	Note: 'Watchdog Timeout Action' below Default: 0 = Timed Out State

¹ Settable while the connection is in the Configuring State.

Table 5-34 Instance 4 - M/S COS/Cyclic I/O Connection (Acknowledged) (continued)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
13	Produce Connection Path Length	UINT	Get	Number of bytes in the Produced Connection Path attribute	Default: 6
14	Produce Connection Path	EPAUTH	Get ¹	Specifies the application object data to be produced by this Connection	Default: As defined by Attribute 102 in the M/S Explicit Connection instance. This attribute is settable only in the Configuring State
15	Consume Connection Path Length	UINT	Get	Number of bytes in the Consume Connection Path attribute	Default: 4
16	Consume Connection Path	EPAUTH	Get	Specifies the application object to receive data by this Connection	The Default value sets the path to instance 1 of the Acknowledge Handler Object Default: 0x20 0x2B 0x24 0x1
17	Production Inhibit Time	UINT	Set ¹	Configures the minimum time between data productions	Default: 0 Limited to a value less than the current EPR[9].

5.7.2.4. Unacknowledged Connection

The Change of State and Cyclic connection types are mutually exclusive. When allocating this type of connection, only one or the other may be selected. The selection of Acknowledged versus Unacknowledged is also mutually exclusive. See Allocating Connections in the DeviceNet Object.

Table 5-35 Instance 4 - M/S COS/Cyclic Connection (Unacknowledged)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
1	State	USINT	Get	State of Object	Note: 'State' below Default: 1 = Configuring State
2	Instance Type	USINT	Get	Indicates type of Connection	Default: 1 = I/O Connection
3	Transport Class & Trigger	USINT	Set ¹	Defines behavior of Connection	Note: 'Transport Class & Trigger' below Default: Cyclic Type = 0x00 COS Type = 0x10

¹ Settable while the connection is in the Configuring State.

Table 5-35 Instance 4 - M/S COS/Cyclic Connection (Unacknowledged) (continued)

Attrib ID	Name	Data Type	Access Rule	Description	Notes
4	Produced Connection ID	UINT	Get	Placed in CAN Identifier Field when the Connection transmits	
5	Consume Connection ID	UINT	Get	CAN Identifier Field value that denotes message to be received	
6	Initial Comm Characteristics	BYTE	Get	Defines the Message Group(s) across which productions and consumptions associated with this Connection occur	Note: 'Initial Comm Characteristics' below Default: 0x0F
7	Produced Connection Size	UINT	Set ¹	Maximum number of bytes transmitted across this Connection	Defined by the size of the Application Data object pointed to by Produce Connection Path attribute
8	Consumed Connection Size	UINT	Get	Maximum number of bytes received across this Connection	Connection consumes no data Default: 0
9	Expected Packet Rate (EPR)	UINT	Set	Defines timing associated with this Connection	Must be configured. Once this value is set, the Polled I/O Connection transitions to the Established State
12	Watchdog Timeout Action	USINT	Set	Specifies how the Connection will handle inactivity/watchdog timeouts	Note: 'Watchdog Timeout Action' below Default: 0 = Timed Out State
13	Produce Connection Path Length	UINT	Get	Number of bytes in the Produced Connection Path attribute	Default: 6
14	Produce Connection Path	EPAUTH	Set ¹	Specifies the application object data to be produced by this Connection	This attribute is settable only in the Configuring State Default: As defined by Attribute 104 in the M/S Explicit Connection instance.
15	Consume Connection Path Length	UINT	Get	Number of bytes in the Consume Connection Path attribute	Default: 0
16	Consume Connection Path	EPAUTH	Get	Specifies the application object to receive data by this Connection	Default: Empty
17	Production Inhibit Time	UINT	Set ¹	Configures the minimum time between data productions	This attribute has no effect on a connection configured for Cyclic communications. Default: 0

¹ Settable while the connection is in the Configuring State.

5.7.2.5. Note: State*Table 5-36 Rules Governing Master/Slave Connections [0x5]*

Value	State	Description
0	Non-Existent	The Connection has not yet been instantiated
1	Configuring	The Connection has been instantiated, but not properly configured. Upon completion of configuration the Apply service must be sent to the Connection
2	Waiting for Connection ID	The Connection is waiting exclusively for the Produce or Consume Connection ID's to be set
3	Established	The Connection has been properly configured and applied
4	Timed Out	The Inactivity/Watchdog has timed out and may have transitioned to this state if the Watchdog Timeout Action attribute has been configured to do so. See Attribute 12.
5	Deferred Delete	If the Connection Object is of Explicit Message Connection type (see Attribute 2) and the Inactivity/Watchdog has timed out, the Connection may transition to this state if the Watchdog Timeout Action attribute has been configured to do so. See Attribute 12.

5.7.2.6. Note: Transport Class & Trigger*Table 5-37 Bit Descriptions*

Bit	7	6	5	4	3	2	1	0
Description	Direction	Production Trigger				Transport Class		

Table 5-38 Direction

Value	Description
0	Client
1	Server

Table 5-39 Production Trigger

Value	Description
0	Cyclic
1	Change of State
2	Application Object

Table 5-40 Transport Class

Value	Description
0	Class 0
1	Reserved
2	Class 2
3	Class 3

5.7.2.7. Note: Initial Comm. Characteristics*Table 5-41 Bit Descriptions*

Bit	7	6	5	4	3	2	1	0
Description	Initial Production Characteristics				Initial Consume Characteristics			

Table 5-42 Initial Production Characteristics

Value	Description
0	Produce Across Message Group 1
1	Produce Across Message Group 2 (Destination)
2	Produce Across Message Group 2 (Source)
3	Produce Across Message Group 3

Table 5-43 Initial Consume Characteristics

Value	Description
0	Consume Across Message Group 1
1	Consume Across Message Group 2 (Destination)
2	Consume Across Message Group 2 (Source)
3	Consume Across Message Group 3

5.7.2.8. Note: Watchdog Timeout Action*Table 5-44 Watchdog Timeout Action*

Value	Timeout Action	Description
0	Transition to Timed Out	The Connection transitions to the Timed Out state and remains in that state until Deleted or Reset. Invalid value for Explicit Connections
1	Auto Delete	The Connection Class automatically deletes the Connection if an Inactivity/Watchdog timeout occurs
2	Auto Reset	The Connection remains in the Established State and restarts the Inactivity/Watchdog timer
3	Deferred Delete	The Connection transitions to the Deferred Delete state if any child connection instances are in the Established state. If no child connection instances are in the Established state the connection is deleted. This value is invalid for I/O Messaging Connections.

5.7.3. Services*Table 5-45 Connection Object Instance 0 Services*

Service Code	Service Name	Service Description	Details
NO INSTANCE 0 SERVICES ARE SUPPORTED			

Table 5-46 Connection Object Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single
0x5	Reset	Used to reset the Inactivity/Watchdog timer and transition the Connection back to the Established state.	No Arguments or Response Data

5.7.4. Service Details

NONE

5.8. Acknowledge Handler Object [0x2B]

The Acknowledge Handler Object is used in conjunction with the acknowledged COS/Cyclic I/O connection types. With acknowledged COS/Cyclic I/O, the Master acknowledges the receipt of data produce by the slave. The Acknowledge Handler is responsible for managing retries and timeouts if the acknowledgement message from the Master is not received.

5.8.1. Attributes*Table 5-47 Acknowledge Handler Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the Acknowledge Handler object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1–65535

Table 5-48 Acknowledge Handler Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	Description	Notes
1	Acknowledge Timer	UINT	Set	Time to wait for acknowledge before resending	
2	Retry Limit	USINT	Set	Number of Acknowledge Timeouts to wait before indicating to the producing connection of a timeout.	
3	COS Producing Connection Instance	UINT	Get	Connection Instance that contains the path of the producing I/O application object that will be notified of Acknowledge Handler events.	

5.8.2. Services*Table 5-49 Acknowledge Handler Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-50 Acknowledge Handler Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

5.8.3. Service Details

NONE

5.9. S-Device Supervisor Object [0x30]

The S-Device Supervisor Object oversees device operation and status. This object maintains an internal state machine that is used to govern the behavior of the Sensor, Actuator, and Controller objects. Also contained in this object are informational attributes extending to those provided in the Identity Object.

5.9.1. Attributes*Table 5-51 S-Device Supervisor Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Device Supervisor object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1–65535

Table 5-52 S-Device Supervisor Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Device Type	SHORT STRING	Get	NV	SEMI Standard specified name which identifies the Device Model within the <i>Hierarchy of Semiconductor Equipment Devices</i>	Max. 8 Characters 'MFC-RT'
4	SEMI Standard Revision Level	SHORT STRING	Get	NV	Specifies the revision level of the SEMI S/A Network Standard to which this device complies	'E54-0997'
5	Manufacturer's Name	SHORT STRING	Get	NV	The name of the manufacturer of the device.	Max. 20 characters 'Brooks Instrument'
6	Manufacturer's Model Number	SHORT STRING	Get	NV	The manufacturer specified model number for the device	Max. 20 characters
7	Software Revision Level	SHORT STRING	Get	NV	Revision level of the firmware in the device.	Note: 'Software Revision Level' below
8	Hardware Revision Level	SHORT STRING	Get	NV	Revision level of the hardware in the device.	
9	Manufacturer's Serial Number	SHORT STRING	Get	NV	Serial number of device assigned by the manufacturer	Max. 30 Characters
10	Device Configuration	SHORT STRING	Get	NV	Any additional manufacturer specific information about the device	Max. 50 characters 'N/A'
11	Device Status	USINT	Get	V	The current operational state of the device.	Note: 'Device Status' below

Table 5-52 S-Device Supervisor Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
12	Exception Status	BYTE	Get	V	Summary status of the current warning and alarm status in the device	Note: 'Exception Status' below
13	Exception Detail Alarm	STRUCT of:	Get	V	A complex structure made up of 3 levels of alarm exception details.	
	Common Exception Detail	STRUCT of:			Common detail bytes defined by the Supervisor Object	See "Note: Exception Detail Alarm – Common Exception Detail" below
	Size	USINT				
	Detail	ARRAY of:				
	Detail n	BYTE			Device detail bytes defined for MFC-RT device type.	See "Note: Exception Detail Alarm – Device Exception Detail" below
	Device Exception Detail	STRUCT of:				
	Size	USINT				
	Detail	ARRAY of:				
	Detail n	BYTE			Manufacturer detail bytes as defined by Brooks Instrument	See "Note: Exception Detail Alarm – Manufacturer Exception Detail" below
	Manufacturer Exception Detail	STRUCT of:				
	Size	USINT				
	Detail	ARRAY of:				
	Detail n	BYTE				

Table 5-52 S-Device Supervisor Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
14	Exception Detail Warning	STRUCT of:	Get	V	A complex structure made up of 3 levels of alarm exception details.	
	Common Exception Detail	STRUCT of:	Common detail bytes defined by the Supervisor Object		See "Note: Exception Detail Warning – Common Exception Detail" below	
	Size	USINT	Device detail bytes defined for MFC-RT device type.		See "Note: Exception Detail Warning – Common Exception Detail" below	
	Detail	ARRAY of:				
	Detail n	BYTE				
	Device Exception Detail	STRUCT of:				
	Size	USINT				
	Detail	ARRAY of:				
	Detail n	BYTE				
	Manufacturer Exception Detail	STRUCT of:				
	Size	USINT				
	Detail	ARRAY of:				
	Detail n	BYTE				
15	Alarm Enable	BOOL	Set	NV	Enables/Disables the Supervisor Object's processing of Alarm information	
16	Warning Enable	BOOL	Set	NV	Enables/Disables the Supervisor Object's processing of Warning information	
99	Subclass	UINT	Get	NV	Identifies a subset of additional instance attributes, services, and behaviors for the Supervisor Object	There are no additional Attributes or Services defined for this implementation

5.9.1.1. Note: Software Revision Level

This attribute represents the current firmware revision running in the device. Brooks Instrument defines the format of this revision level. The format of this attribute is comprised of two letters. The first letter indicates the major revision and the second is the minor revision. **Example:** AB

Any software revision that contains an X in the identifier is an experimental release. Releases such as these are strictly reserved for Beta evaluations and are not standard production release.

5.9.1.2. Note: Device Status

The value of this attribute represents the current operational state of the device. The values are defined in the following table. A State Event Matrix and State Event Diagram are outlines in Appendix F - State Machine.

Table 5-53 Device Status

Attrib	Operational	Safe	Description
0	Undefined	Y	
1	Self Testing	Y	All object instances exist and have been initialized. Exception Status bits have been reset. The device is executing internal tests to determine if the device is qualified to begin normal monitoring and control operations.
2	Idle	Y	The device is ready for normal monitoring and control operations.
3	Self Test Exception	Y	The device has detected an exceptional condition during self-test. The details of the exception are stored in the exception detail attributes of the Supervisor Object.
4	Executing	N	The device is performing normal control and monitoring operations
5	Abort	Y	The device is idle, but is NOT ready for normal monitoring and control operations. A Recover Request must be initiated to reach a ready condition.
6	Critical Fault	Y	The Supervisor Object and device are in a fault state from which there is no recovery.

5.9.1.3. Note: Exception Status

Exception Status for this device utilizes the Expanded Method outlined in the ODVA™ specification for the S-Device Supervisor Object. This is indicated by setting bit 7 in this attribute to 1.

The table below shows the format of bits in this attribute. The setting of any of these bits is obtained by taking the logical “OR” of the related exception detail bits. For example, if any of the bits in the Device Common Alarm Detail are set, bit 0 of this attribute will be set to 1.

Table 5-54 Exception Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	Warning Mfr. Specific	Warning Device Specific	Warning Device Common	0	Alarm Mfr. Specific	Alarm Device Specific	Alarm Device Common
	See “Note: Exception Detail Warning – Manufacturer Exception Detail”	See “Note: Exception Detail Warning – Device Exception Detail”	See “Note: Exception Detail Warning – Common Exception Detail”		See “Note: Exception Detail Alarm – Manufacturer Exception Detail”	See “Note: Exception Detail Alarm – Device Exception Detail”	See “Note: Exception Detail Alarm – Common Exception Detail”

5.9.1.4. Note: Exception Detail Alarm – Common Exception Detail*Table 5-55 Alarm – Common Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	2							
Detail Byte 0	0	0	0	RAM	NV RAM	Flash Memory	0	Diagnostic
Detail Byte 1	0	0	0	0	0	0	0	0

5.9.1.5. Note: Exception Detail Alarm – Device Exception Detail*Table 5-56 Alarm – Device Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	2							
Detail Byte 0	0	0	Valve High	Valve Low	Control	Flow High	Flow Low	0
Detail Byte 1	0	0	0	0	0	0	Pressure High	Pressure Low

5.9.1.6. Note: Exception Detail Alarm – Manufacturer Exception Detail*Table 5-57 Alarm – Manufacturer Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	0 (None Defined)							

5.9.1.7. Note: Exception Detail Warning – Common Exception Detail*Table 5-58 Warning – Common Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	2							
Detail Byte 0	0	0	0	0	0	0	0	Diagnostic
Detail Byte 1	0	0	0	0	0	0	0	0

5.9.1.8. Note: Exception Detail Warning – Device Exception Detail*Table 5-59 Warning – Device Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	2							
Detail Byte 0	0	0	Valve High	Valve Low	Control	Flow High	Flow Low	Not Reading Valid for Flow
Detail Byte 1	0	0	0	Not Reading Valid for Pressure	0	0	Pressure High	Pressure Low

5.9.1.9. Note: Exception Detail Warning – Manufacturer Exception Detail*Table 5-60 Warning – Manufacturer Exception Detail*

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Detail Size	0 (None Defined)							

5.9.2. Services*Table 5-61 S-Device Supervisor Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-62 S-Device Supervisor Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single
0x05	Reset	Resets the device to the Self-Testing state	Acceptance of these services is dependent upon the current device operational state.
0x06	Start	Moves the device to the Executing State	
0x07	Stop	Moves the device to the Idle State	See State Event Matrix or Diagram in Appendix F - State Machine.
0x4B	Abort	Moves the device to the Abort State	
0x4C	Recover	Moves the device out of the Abort State	
0x4E	Perform Diagnostics	Causes the device to perform a set of diagnostic routines.	For details on performing the Diagnostic Service go to Perform Diagnostics in Service Details section

5.9.2.1. Service Details**5.9.2.1.1. Perform Diagnostics***Table 5-63 Diagnostics Service Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
Test ID	USINT	N	See Test ID Table Below	The identifier of the diagnostic test to be performed. See Table Below

Table 5-64 Test ID

Test ID	Description
0 (default)	Standard

Table 5-65 Diagnostic Service Response

Parameter Name	Data Type	Required Value	Parameter	Description
NO RESPONSE DATA				

5.10. S-Analog Sensor Object [0x31]

The S-Analog Sensor Object is responsible for reporting sensor values. The sensor object can linearize the sensor values and convert measurements into engineering data units.

Within the MFC-RT there are two S-Analog Sensor Objects represented. Instance one reports values for the Flow sensor and instance two for Pressure. Each instance contains the same attributes allowing for Table 5-66 and Table 5-67 to serve as a template for sensor functionality. Consequently this manual will only depict a single set of tables that are used for either sensor instance.

5.10.1. Attributes*Table 5-66 S-Analog Sensor Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Analog Sensor object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 5-67 S-Analog Sensor Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Data Type	USINT	Cond.	NV	Defines the Data Type of Sensor Value[6] and other attributes in this object.	See Note 'Data Type' below Default = INT
4	Data Units	ENGUNITS	Cond.	NV	Defines the Engineering Units context of Sensor Value[6] and other attributes in this object.	See Note 'Data Units' below Default = Counts
5	Reading Valid	BOOL	Get	V	Indicates that Sensor Value[6] has a valid value.	0 = Invalid Sensor Value 1 = Valid Sensor Value
6	Flow	Specified by Attrib. 3 & 4	Get	V	The amount of flow going through the sensor	This value is corrected, converted, and calibrated to report the actual value of flow or pressure.
	Pressure				The amount of pressure as measured by the sensor.	

Table 5-67 S-Analog Sensor Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
7	Status	BYTE	Get	V	Alarm and Warning status for the S-Analog Sensor Object	See Note 'Status' below
8	Alarm Enable	BOOL	Set	NV	Enables the setting of the alarm status bits	See Note: Alarms below 0 = disable [default] 1 = enable
9	Warning Enable	BOOL	Set	NV	Enables the display of the warning status bits	See Note: Warnings below 0 = disable [default] 1 = enable
10	Full Scale	Specified by Attrib. 3 & 4	Get	NV	The sensor value that represents 100% of the currently selected calibration full scale or application.	See Note 'Full Scale' below
11	Offset-A Data Type	USINT	Get	NV	Defines the data type for Offset-A[12]	See Note 'Data Type' below Default = INT
12	Offset-A	Specified by Attrib. 4 & 11	Set	NV	A value added to the sensor value in the process of determining Sensor Value[6]	See Note 'Offset-A and Gain' below Default = 0
13	Gain Data Type	USINT	Get	NV	Determines the data type of attribute Gain[14]	Default = REAL
14	Gain	Specified by Attrib. 4 & 13	Set	NV	An amount the actual sensor value is scaled to derive Sensor Value[6]	See Note 'Offset-A and Gain' below 1.0 = [default]
17	Alarm Trip Point High	Specified by Attrib. 3 & 4	Set	NV	Determines the Sensor Value[6] above which an Alarm Condition will occur	See 'Note: Alarms' below Default = Maximum value for its data type
18	Alarm Trip Point Low	Specified by Attrib. 3 & 4	Set	NV	Determines the Sensor Value[6] below which an Alarm Condition Will occur	See 'Note: Alarms' below Default = Minimum value for its data type
20	Alarm Settling Time	UINT	Set	NV	Determines the time that the Sensor Value[6] must exceed the Trip Point before the exception condition is generated.	See 'Note: Alarms' below Time in milliseconds Default = 0

Table 5-67 S-Analog Sensor Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
21	Warning Trip Point High	Specified by Attrib. 3 & 4	Set	NV	Determines the Sensor Value[6] above which a Warning Condition will occur	See 'Note: Warnings' below Default = Maximum value for its data type
22	Warning Trip Point Low	Specified by Attrib. 3 & 4	Set	NV	Determines the Sensor Value[6] below which a Warning Condition will occur	See 'Note: Warnings' below Default = Minimum value for its data type
24	Warning Settling Time	UINT	Set	NV	Determines the time that the Sensor Value[6] must exceed the Trip Point before the exception condition is generated.	See 'Note: Warnings' below Time in milliseconds Default = 0
25	Safe State	USINT	Set	NV	Specifies the behavior of the value reported for Sensor Value[6] when the device is in an Operational State other than Executing State	See Note 'Safe State' below
26	Safe Value	Specified by Attrib. 3 & 4	Set	NV	The value that is indicated by Sensor Value[6] if the Safe State[25] is configured to "Use Safe Value"	
28	Auto-zero Status	BOOL	Get	V	Indicates the status of the automatic nulling	Default = 0
34	Produce Trigger Delta	Specified by Attrib. 3 & 4	Set	NV	The amount that Sensor Value[6] must change before a Change of State Production is triggered	See Note 'Produce Trigger Delta' below
35	(Instance 1) Gas Calibration Object Instance	UINT	Set	NV	(Instance 1) Configures which S-Gas Calibration Object instance is currently active for this object.	See Note 'Gas Calibration Object Instance' below
	(Instance 2) Pressure Application Instance				(Instance 2) Configures which Pressure Application Instance is currently active for this object.	See Note 'Pressure Application Instance' below
36	Produce Trigger Delta Type	USINT	Get	NV	Specifies the interpretation of the Produce Trigger Delta[34] Attribute	See 'Note: Produce Trigger Delta Type' below

Table 5-67 S-Analog Sensor Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
99	Subclass	UINT	Get	NV	Identifies a subset of additional instance attributes, services, and behaviors for the Sensor Object	The value of this attribute is 1 = Flow Diagnostics Subclass
110	Compensated Sensor Temperature (Instance 1)	STRUCT of:	Get	NV	A structure that contains both the Compennsated Sensor temperature value and the engineering units assigned to that value.	See Note "Compensated Sensor Temperature" below
	Amount	REAL				
	Units	ENG UNITS				
	Full Scale (Instance 2)	STRUCT of:	Get	NV	A structure that contains both the sensor value that represents 100% of the currently selected calibration full scale and the engineering units assigned to that value.	See Note "Full-Scale Structure" below
	Amount	REAL				
	Units	ENG UNITS				

5.10.1.1. Note: Data Type

The value of this attribute is limited to INT or REAL. This attribute can only be set when the device is not in the Operational State of Executing. If any of the attributes in this object use the attribute Data Type[3] to define their data type and the attribute is the end point of an active I/O connection, then the access rule for the attribute Data Type[3] becomes Get and thus cannot be set until the I/O connection becomes inactive. Additionally, the inferred data type of an Assembly object (see The "Inferred" Data Type) will modify this value if the Assembly object has been assigned to an active I/O connection.

Example 1: If the value of Sensor Value[6] is exchanged via the Polled I/O connection, Data Type[3] cannot be modified until that Polled I/O Connection is terminated.

Example 2: If Assembly instance 1 is assigned to the Polled I/O connection produce path, the value of Data Type[3] will be set to INT when the Polled I/O connection transitions to the Active state. When the Polled I/O connection is terminated, the value of this attribute will remain INT. It will not return to the value prior to commissioning the Polled I/O connection.

5.10.1.2. Note: Data Units

The value of this attribute is limited to the values specified in the Pressure Units Table, Volumetric Flow Units Table or Mass Flow Units table in Appendix C - Data Units. This attribute can only be set when the device is not in the Operational State of Executing. See Example 1 above in Note: Data Type.

5.10.1.3. Note: Status

The following table defines the bits in this status byte. The value of 1 = Set and 0 = Cleared.

Table 5-68 Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	Low Flow Warning	High Flow Warning	Low Flow Alarm	High Flow Alarm

Table 5-69 Pressure Status Instance 2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	Low Pressure Warning	High Pressure Warning	Low Pressure Alarm	High Pressure Alarm

5.10.1.4. Note: Full Scale

The value of this attribute will depend upon the values configured for attributes 4 and 35. The following table will describe the behavior of this attribute.

Table 5-70 Full Scale

Data Units	Full Scale Definition
Counts	Default = 24576 for Full Scale[10] regardless of the selected calibration or application instance full scale. This allows for an overshoot indication of 133% of the calibrated full scale (e.g. 32767 = 133%). To change this, utilize the Set Full Scale Counts service to set the desired 100% full scale. A good formula to use is: $\text{Full Scale Counts} = (100\% / \text{Desired Percent Overshoot}) \times 32767$
Percent	The value will always be 100.
Any Pressure, Volumetric or Mass Flow Engineering Unit	For a Flow Sensor the Full Scale[10] will be determined by using the attribute Calibration Full Scale [0x34,1,6] of the S-Gas Calibration Object as configured by the Selected Gas Calibration Object Instance[35] and converted to the configured Data Unit[4]. For a Pressure Sensor the Full Scale[10] will be determined by using an attribute from the application database and converted to the configured Data Units[4]. Example: If Instance 1 of an S-Gas Calibration Object has a Calibration Full Scale[6] of 100 Liters/sec, and the desired Data Units[4] in the Sensor Object is SCCM, the value of Full Scale[10] will be 600000 (Note: Mass units will take into account the density when doing the conversion).

5.10.1.5. Note: Offset-A and Gain

The following formula is used to calculate the value of attribute 6:

$$\text{Flow}[6] = (\text{Raw Signal} + \text{Offset-A}[12]) \times \text{Full Scale} [10] \times \text{Gain}[14]$$

Where Raw Signal is a number such that 0.0 = Zero and 1.0 is equal to 100% of Full Scale.

The operational function of the controller is to change the actuator drive in such a way as to reduce the error between reported sensor value and the commanded Setpoint. When applying the values of Offset-A and Gain to the sensor value this principal of operation can not be overridden. To that end the sensor Offset-A and Gain will be applied to an internal Setpoint. The internal controller will then drive the actuator to reduce the error between internal Setpoint and the actual sensor value. Before the device reports the actual sensor value it will remove the affects of Offset-A and Gain from the sensor value. In this way the device will deliver a quantity of gas that is effected by Offset-A and Gain, but reports a flow value that will satisfy the process applications error resolution.

One can see that if this system of applying the Offset-A and Gain is employed with a negative Offset-A the internal Setpoint would be driven to a negative value when the commanded Setpoint is equal to or greater than the Offset-A. This negative Setpoint is impractical in that our device can not create a condition of reverse flow. Consequently the implementation limits the internal Setpoint to a value of greater than or equal to zero.

Conversely if a positive Offset-A is applied and the Setpoint is commanded to a value of 110% the internal Setpoint would be driven to a value greater than the devices maximum operating range. For this reason the internal Setpoint is limited to the maximum operating range for the device.

Given these conditions one can see if an Offset-A or Gain value is applied to the device there is the potential that the actual flow provided by the device will not match the commanded Setpoint. As the commanded Setpoint approaches the maximum operational range the device will limit the internal Setpoint to the maximum control range, providing a flat spot on the flow curve. Additionally at the zero range of the commanded Setpoint the device would not flow gas until the commanded Setpoint is greater than a negative Offset-A.

5.10.1.6. Note: Safe State

The following table outlines valid values for this attribute:

Table 5-71 Safe State

Value	State	Description
0	Zero (default)	The value of attribute 6 will be 0
1	Full Scale	The value of attribute 6 will equal Full Scale[10]
2	Hold Last Value	The value of attribute 6 will hold to the most recent sensor reading just prior to entering the safe state
3	Use Safe Value	The value of attribute 6 will equal Safe Value[26]
100	Track	The value of attribute 6 will continue to update normally as if in the Executing State

5.10.1.7. Note: Produce Trigger Delta

This attribute only affects the behavior of the COS I/O Connection. This attribute will set the threshold of when to create a COS trigger event. The following algorithm is employed to generate a trigger:

IF

*Attribute 6 >= Last COS Trigger Value + Produce Trigger Delta[34] or
Attribute 6 >= Last COS Trigger Value - Produce Trigger Delta[34]*

THEN

*COS Trigger Event
Last COS Trigger Value = Attribute 6*

ENDIF

This algorithm is run once every two control loop times which is approximately once every 60 milliseconds. Therefore, COS Production will occur no faster than this. Also, the Production Inhibit Timer, if configured for the COS Connection, will throttle the frequency of I/O data produced.

5.10.1.8. Note: Gas Calibration Object Instance

The value of this attribute is limited to the number of S-Gas Calibration Object instances configured in the device. The minimum value is 1, which is also the default value.

5.10.1.9. Note: Pressure Application Instance

The value of this attribute is limited to the number of Pressure Application instances configured in the device. The minimum value is 1, which is also the default value.

5.10.1.10. Note: Produce Trigger Delta Type

Specifies the interpretation of the Produce Trigger Delta[34] Attribute as per the following table:

Table 5-72 Produce Trigger Delta Type

Attribute Value	Trigger Type	Data Type of Produce Trigger Delta
0 [default]	Absolute Value	As specified by Data Type[4]
1	Percent of Full Scale	UINT
2-255	Reserved by DeviceNet for future use.	

5.10.1.11. Note: Alarms

Enable the reporting of Alarms for the S-Analog Sensor object via Alarm Enable[8] attribute. When Sensor Value[6] exceeds the limits set by Alarm Trip Point High[17] or Alarm Trip Point Low[18] a corresponding bit from the Status[7] attribute is set, see Status above.

The attribute Alarm Settling Time[20] sets the interval of a timer that masks the reporting of alarms. Once the timer expires if an alarm condition still exists the warning is reported.

If alarms are enabled in the S-Device Supervisor Object the actuator alarms are reported via the Exception Status [12] and corresponding Exception Detail Alarm[13] of the S-Device Supervisor Object.

5.10.1.12. Note: Warnings

Enable the reporting of Warnings for the S-Analog Sensor object via Warning Enable[9] attribute. When Sensor Value[6] exceeds the limits set by Warning Trip Point High[21] or Warning Trip Point Low[22] a corresponding bit from the Status[7] attribute is set, see Status above.

The attribute Warning Settling Time[24] sets the interval of a timer that masks the reporting of warnings. Once the timer expires if a warning condition still exists the warning is reported.

If warnings are enabled in the S-Device Supervisor Object the actuator warnings are reported via the Exception Status [12] and corresponding Exception Detail Warning[14] of the S-Device Supervisor Object.

5.10.1.13. Note: Compensated Sensor Temperature Structure

Compensated Sensor Temperature value represents the temperature of the enclosure that contains the thermal mass flow sensor, as reported by an internal temperature-sensing device. The temperature-sensing device is calibrated by means of an offset that shifts the reported internal temperature of the sensor to a value representative of the ambient temperature of the calibration station.

NOTE:

The Compensated Sensor Temperature value was calibrated in reference to ambient temperature while the device was in a quiescent state. We define a quiescent state as a stable temperature achieved after the device has been powered on for 45 minutes with the device in the "Idle" state and valve override not engaged.

5.10.1.14. Note: Full-Scale Structure

The values for this structure of Full-Scale are derived from attributes contained in other objects in the device.

Table 5-73 Pressure Full-Scale Structure

Attribute	Source
Amount	This S-Analog Sensor Object Full-Scale [10]
Units	An internal value assigned at time of calibration

5.10.2. Services*Table 5-74 S-Analog Sensor Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-75 S-Analog Sensor Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single
0x4B	Zero Adjust	Indicates to the device that the current Sensor Value[6] represents a process value of zero.	
0x32	Set Full Scale Counts	Defines the Counts value that represents 100% of the calibration full scale	This only affects the way the value of Sensor Value[6] is reported in relation to the Full Scale calibration when the Units[4] is set to Counts.

5.10.2.1. Service Details**5.10.2.1.1. Set Full Scale Counts***Table 5-76 Set Full-Scale Counts Service Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
Full Scale Counts	INT	Y	-32768 to 32767	The Counts value that defines 100% of the calibration full scale. The value that is passed here in this argument will be reported in attribute Full Scale[10].

Table 5-77 Set Full-Scale Counts Service Response

Parameter Name	Data Type	Required Value	Parameter	Description
NO SUCCESS RESPONSE DATA				

5.11. S-Analog Actuator Object [0x32]

The S-Analog Actuator is responsible for management of the actuator device controlling the process. Within an MFC-RT device there is a single actuator device that is controlled by either Instance one (Flow) or Instance two (Pressure) of the S-Single Stage Controller Objects. By changing the attribute Active Instance[100] in Instance zero of the S-Single Stage Controller Object this single instance of the S-Analog Actuator Object will receive its control signal from either the Flow controller (Active Instance value of one) or the Pressure controller (Active Instance value of two).

5.11.1. Attributes

Table 5-78 S-Analog Actuator Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Analog Actuator object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Table 5-79 S-Analog Actuator Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Data Type	USINT	Cond.	NV	Defines the Data Type of Value[6] and other attributes in this object.	See Note 'Data Type' below Default = INT
4	Data Units	ENGUNITS	Cond.	NV	Defines the Engineering Units context of Value[6] and other attributes in this object.	See Note 'Data Units' below Default = Counts
5	Override	USINT	Set	V	Specifies a direct override of the physical actuator	See Note 'Override' below
6	Value	Specified by Attrib. 3 & 4	Get	V	The value of the analog output signal used to drive the physical actuator	See Note 'Valve' below
7	Status	BYTE	Get	V	Alarm and Warning status for the S-Analog Actuator Object	See Note 'Status' below

Table 5-79 S-Analog Actuator Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
8	Alarm Enable	BOOL	Set	NV	Enables setting of the Alarm bit	See Note 'Alarms' below 0 = disabled [default] 1 = enabled
9	Warning Enable	BOOL	Set	NV	Enables setting of the Warning bit	See Note 'Warnings' below 0 = disabled [default] 1 = enabled
12	Gain Data Type	USINT	Get	NV	Determines the Data Type of the Attribute Gain[13]	Default = REAL
13	Gain	Specified by Attrib. 4 & 12	Get	NV	An amount by which Value[6] is scaled prior to driving the physical actuator	Default = 1.0
15	Alarm Trip Point High	Specified by Attrib. 3 & 4	Set	NV	Determines the Value[6] above which an Alarm condition will occur.	See Note 'Alarms' below [default] = Maximum value for its data type
16	Alarm Trip Point Low	Specified by Attrib. 3 & 4	Set	NV	Determines the Value[6] below which an Alarm condition will occur.	See Note 'Alarms' below [default] = Minimum value for its data type
18	Warning Trip Point High	Specified by Attrib. 3 & 4	Set	NV	Determines the Value[6] above which a warning condition will occur.	See Note 'Warnings' below [default] = Maximum value for its data type
19	Warning Trip Point Low	Specified by Attrib. 3 & 4	Set	NV	Determines the Value[6] below which a warning condition will occur.	See Note 'Warnings' below [default] = Minimum value for its data type
21	Safe State	USINT	Set	NV	Specifies the behavior for the physical actuator in an Operational State other than Executing State	See Note 'Safe State' below
22	Safe Value	Specified by Attrib. 3 & 4	Set	NV	The analog output signal value that is indicated by Attrib. 6 if the Safe State[21] is configured to "Use Safe Value"	Default = 0

5.11.1.1. Note: Data Type

The value of this attribute is limited to INT or REAL. This attribute can only be set when the device is not in the Operational State of Executing. If any of the attributes in this object use the attribute Data Type[3] to define their data type and the attribute is the end point of an active I/O connection, then the access rule for the attribute Data Type[3] becomes Get and thus cannot be set until the I/O connected becomes inactive. Additionally, the inferred data type of an Assembly object (see The “Inferred” Data Type) will modify this value if the Assembly object has been assigned to an active I/O connection.

Example 1:

If the value of Value[6] is being exchanged via the Polled I/O connection, attribute 3 cannot be modified until that Polled I/O Connection is terminated.

Example 2:

If Assembly instance 3 is assigned to the Polled I/O connection produce path, the value of attribute 3 will be set to INT when the Polled I/O connection transitions to the Active state. When the Polled I/O connection is terminated, the value of this attribute will remain INT. It will not return to the value prior to commissioning the Polled I/O connection.

5.11.1.2. Note: Data Units

The value of this attribute is limited to the values specified in the table in Appendix C – Actuator Data Units. This attribute can only be set when the device is not in the Operational State of Executing. See Example 1 above in Note: Data Type.

5.11.1.3. Note: Override

The following table outlines the valid actuator override types.

Table 5-80 Override

Value	State	Description
0	Normal	Actuator is under normal operational control
1	Closed	Actuator is driven fully closed (Value[6] = 0% or 0 Counts)
2	Open	Actuator is driven fully open (Value[6] = 100% or 24576 Counts)
3	Hold	Actuator is held to last updated analog output signal prior to assertion of override
4	Safe State	Actuator is driven to the condition specified by the Safe State[21] attribute

5.11.1.4. Note: Valve

To interpret the value of this attribute, it is important to understand the following terms:

Operational Range:

This is the range that is reported by Value[6]. The operational range of the actuator is full range that the actuator can be driven to move. This corresponds to Value[6] values of 0 to 100% (0 to 24576 Counts).

Nominal Control Range:

The nominal control range is a set of values that the actuator is driven to that maps directly between 0 Sensor Value and full scale Sensor Value. This set of values is a sub-range within the large operational range of the actuator. Example, the nominal control range for a 0 to 100 SCCM device flowing nitrogen could be as follows:

at 0 SCCM Actuator = 20% (4915 counts)

at 100 SCCM, Actuator = 30% (7373counts)

Under normal operational control (no override), the actuator generally operates in the nominal control range. The upper end of the control range is not an absolute limit under normal control. The controller will drive the actuator to whatever value is necessary to control the process value. For example, if a restriction occurred upstream of the device resulting in reduced supply to the device, the controller will drive the actuator beyond the nominal control range to maintain control.

5.11.1.5. Note: Status

The following table defines the bits in this status byte. The value of 1 = Set and 0 = Cleared.

Table 5-81 Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	Low Warning	High Warning	Low Alarm	High Alarm

5.11.1.6. Note: Safe State

The following table outlines valid values for this attribute. This table applies for normally closed and normally open valves.

Table 5-82 Safe State

Value	State	Description
0	Closed	The actuator will be driven closed and the value of Value[6] will be 0% or 0 Counts
1	Open	The actuator will be driven open and the value of Value[6] will be 100% or 24576 Counts
2	Hold Last Value	The actuator will be driven to the last updated value of the analog output just prior to the entering of the safe state.
3	Use Safe Value	The actuator will be driven to the value configured in Safe Value[22] and Value[6] = Safe Value[22]

5.11.1.7. Note: Alarms

Enable the reporting of Alarms for the S-Analog Actuator object via Alarm Enable[8] attribute. When Value[6] exceeds the limits set by Alarm Trip Point High[15] or Alarm Trip Point Low[16] a corresponding bit from the Status[7] attribute is set, see Status above. If alarms are enabled in the S-Device Supervisor Object the actuator alarms are reported via the Exception Status [12] and corresponding Exception Detail Alarm[13] of the S-Device Supervisor Object.

5.11.1.8. Note: Warnings

Enable the reporting of Warnings for the S-Analog Actuator object via Warning Enable[9] attribute. When Value[6] exceeds the limits set by Warning Trip Point High[18] or Warning Trip Point Low[19] a corresponding bit from the Status[7] attribute is set, see Status above. If warnings are enabled in the S-Device Supervisor Object the actuator warnings are reported via the Exception Status [12] and corresponding Exception Detail Warning[14] of the S-Device Supervisor Object.

5.11.2. Services*Table 5-83 S-Analog Actuator Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-84 S-Analog Actuator Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

5.11.2.1. Service Details

NONE

5.12. S-Single Stage Controller Object [0x33]

The S-Single Stage Controller object is responsible for closing the loop between the measured process variable (via the S-Analog Sensor) and the control variable (via the S-Analog Actuator).

5.12.1. Attributes

Table 5-85 S-Single Stage Controller Instance 0 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Single Stage Controller object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535
100	Active Instance	USINT	Set	NV	Denotes the instance (n) of the S-Single Stage Controller that is actively processing the control loop. This loop drives the actuator to null the difference between process value and Setpoint[101] Instance 0 and Setpoint[6] Instance n.	Default = 1. The MFC-RT Device Type supports Instance 1 and 2 of the S-Single Stage Controller.
101	Setpoint	Specified by Attrib. 3 & 4 of the Active Instance[100]	Set	V	This attribute mirrors the Setpoint[6] Instance n attribute, where n equals the Active Instance[100].	In an MFC-RT, Setpoint[101] mirrors Setpoint[6] of the Active Instance, which is limited to Instance 1 or 2.
102	Mode	USINT	Set	NV	Identifies a Device Type specific controller mode. This value tells the device whether the pressure controller is configured as an Up Stream or Down Stream Controller.	1 = Down Stream 2 = Up Stream Default = 1 Range = 1-2

Table 5-86 S-Single Stage Controller Instance 1 Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Data Type	USINT	Cond.	NV	Defines the Data Type of Setpoint[6] and other attributes in this object.	See 'Note: Data Type' below Default = INT
4	Data Units	ENGUNITS	Cond.	NV	Defines the Engineering Units context of Setpoint[6] and other attributes in this object	See 'Note: Data Units' below Default = Counts
6	Setpoint	Specified by Attrib. 3 & 4	Set	V	The sensor value that the device will maintain at steady state condition.	
10	Status	BYTE	Get	V	Alarm and Warning status for the S-Single Stage Controller Object	See 'Note: Status' below
11	Alarm Enable	BOOL	Set	NV	Enables setting of the Alarm bit	See 'Note: Alarms' below 0 = disabled [default] 1 = enabled
12	Warning Enable	BOOL	Set	NV	Enables setting of the Warning bit	See 'Note: Warnings' below 0 = disabled [default] 1 = enabled
13	Alarm Settling Time	UINT	Set	NV	Number of milliseconds allowed for the control-loop to settle to within the error band	See 'Note: Alarms' below Default = 0
14	Alarm Error Band	Specified by Attrib. 3 & 4	Set	NV	The maximum deviation band by which Setpoint must equal the Process Variable before an alarm is enunciated.	See 'Note: Alarms' below Default = 0
15	Warning Settling Time	UINT	Set	NV	Number of milliseconds allowed for the control-loop to settle to within the error band	See 'Note: Warnings' below Default = 0
16	Warning Error Band	Specified by Attrib. 3 & 4	Set	NV	The maximum deviation band by which Setpoint must equal the Process Variable before a warning is enunciated.	See 'Note: Warnings' below Default = 0

Table 5-86 S-Single Stage Controller Instance 1 Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
19	Constant Time Ramp Rate	UDINT	Set	NV	The amount of time, in milliseconds, the controller will take to "ramp" flow from its current value to its final value as commanded in Setpoint[6]	See 'Note: Ramp Rates' below Default = 0 (Disabled)
99	Subclass	UINT	Get	NV	Identifies a subset of additional instance attributes, services, and behaviors for the Sensor Object	Default = 0.0 (Disabled)
100	Constant Slope Ramp Rate	REAL	Set	NV	Defines the rate of change in flow per second the controller will maintain in ramping flow from its current value to its final value as commanded in Setpoint[6]	See 'Note: Ramp Rates' below Default = 0 (Disabled)
101	Derivative Gain (Kd)	REAL	Set	NV	The gain factor for the derivative term of the PID control compensation	See 'Note: PID Gains' below
102	Integral Gain (Ki)	REAL	Set	NV	The gain factor for the integral term of the PID control compensation	See 'Note: PID Gains' below
103	Proportional Gain (Kp)	REAL	Set	NV	The gain factor for the proportional term of the PID control compensation	See 'Note: PID Gains' below

5.12.1.1. Note: Data Type

The value of this attribute is limited to INT or REAL. This attribute can only be set when the device is not in the Operational State of Executing. If any of the attributes in this object use the attribute Data Type[3] to define their data type and the attribute is the end point of an active I/O connection, then the access rule for the attribute Data Type[3] becomes Get and thus cannot be set until the I/O connection becomes inactive. Additionally, the inferred data type of an Assembly object (see The "Inferred" Data Type) will modify this value if the Assembly object has been assigned to an active I/O connection.

Example 1: If the value of Setpoint[6] is exchanged via the Polled I/O connection, Data Type[3] cannot be modified until that Polled I/O Connection is terminated.

Example 2: If Assembly instance 7 is assigned to the Polled I/O connection consume path, the value of Data Type[3] will be set to INT when the Polled I/O connection transitions to the Active state. When the Polled I/O connection is terminated, the value of this attribute will remain INT. It will not return to the value prior to commissioning the Polled I/O connection.

5.12.1.2. Note: Data Units

The value of this attribute is limited to the values specified in the Pressure Units Table, Volumetric Flow Units Table and Mass Flow Units table in Appendix C - Data Units. This attribute can only be set when the device is not in the Operational State of Executing. See Example 1 above in Note: Data Type.

5.12.1.3. Note: Status

The following table defines the bits in this status byte. The value of 1 = Set and 0 = Cleared.

Table 5-87 Status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	Controller Warning	Controller Alarm

5.12.1.4. Note: Alarms

Enable the reporting of Alarms for the S-Single Stage Controller via Alarm Enable[11] attribute. When the process value (Flow or Pressure) exceeds Setpoint[6] by the limits established by Alarm Error Band [14] a corresponding bit from the Status[7] attribute is set, see Status above.

The attribute Alarm Settling Time[13] sets the interval of a timer that masks the reporting of alarms until the control loop can stabilize the process value (Flow or Pressure) on the commanded Setpoint[6]. Once the timer expires if an alarm condition still exists the warning is reported.

If alarms are enabled in the S-Device Supervisor Object the controller alarms are reported via the Exception Status [12] and corresponding Exception Detail Alarm[13] of the S-Device Supervisor Object.

5.12.1.5. Note: Warnings

Enable the reporting of Warnings for the S-Single Stage Controller object via Warning Enable[12] attribute. When the process value (Flow or Pressure) exceeds Setpoint[6] by the limits established by Warning Error Band [16] a corresponding bit from the Status[7] attribute is set, see Status above.

The attribute Warning Settling Time[15] sets the interval of a timer that masks the reporting of warnings until the control loop can stabilize the process value (Flow or Pressure) on the commanded Setpoint[6]. Once the timer expires if a warning condition still exists the warning is reported.

If warnings are enabled in the S-Device Supervisor Object the controller warnings are reported via the Exception Status [12] and corresponding Exception Detail Warning[14] of the S-Device Supervisor Object.

5.12.1.6. Note: Ramp Rates

Constant Time Ramp Rate[19] and Constant Slope Ramp Rate[100] functions are mutually exclusive. The setting of one of these attributes to enable a ramp function will disable the other ramp function by clearing its corresponding attribute. Example, if Constant Slope Ramp Rate[100] is set to 1.3, Constant Time Ramp Rate will automatically be cleared (set to 0), disabling the constant time ramp function. Setting both attributes to 0 disables all ramp functionality.

5.12.1.7. Note: PID Gains

The MFC-RT device utilizes a PID compensator in the control loop as a means of optimizing and tuning control. The attributes are scalar numbers used as multipliers for their respective P, I, and D terms.

5.12.2. Services*Table 5-88 S-Single Stage Controller Instance 0 Services*

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-89 S-Single Stage Controller Instance 1 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single

5.12.2.1. Service Details

NONE

5.13. S-Gas Calibration Object [0x34]

The S-Gas Calibration object defines characteristics associated with linearization/compensation of the gas flow sensor. In the MFC-RT device the S-Gas Calibration Object is applied only to instance 1 (Flow) of the S-Analog Sensor object. Linearization of the S-Analog Sensor for Instance 2 (Pressure) is handled via the Pressure Application and is not represented by a DeviceNet object, although P, I, and D terms are available via the S-Single Stage Controller object.

5.13.1. Attributes*Table 5-90 S-Gas Calibration Instance 0 Attributes*

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
1	Revision	UINT	Get	NV	Revision of the S-Gas Calibration object class definition upon which the implementation is based.	If updates require an increase in this value, then the value of this attribute increases by 1. Range 1– 65535

Brooks DeviceNet MFC-RTs

Table 5-91 S-Gas Calibration Instance 1..n Attributes

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
3	Gas Standard Number	UINT	Cond.	NV	The gas type number assigned to this gas	See Note 'Gas Standard Number' below Default = 0, no gas type specified.
4	Valid Sensor Instance	UINT	Cond.	NV	The instance of the S-Analog Sensor Object that this Gas Calibration Object is valid	Default = 1
5	Gas Symbol	Short String	Set	NV	Gas Type Name	Default = null
6	Full Scale	STRUCT of:	Get	NV	Represents the maximum calibrated flow value.	
	Amount	REAL			The amount of flow corresponding to full scale	
	Units	ENGUNITS			The engineering units assigned to the above	
7	Additional Scalar	REAL	Set	NV	Additional correction factor	In addition to the algorithm, this amount is multiplied by the reading. Generally used for gas correction for a gas other than the type identified for the object instance by attribute 3. (e.g., scale a nitrogen object instance to measure argon) . Default = 1.0
8	Calibration Date	UINT	Get	NV	Date of Calibration	The date this object was calibrated. Default = 1.0
9	Calibration Gas Number	UINT	Get	NV	Calibration Gas	The gas number of the gas used to calibrate this object instance. Default = 0
10	Gas Correction Factor	REAL	Get	NV	A simple scalar number used to correct the flow sensor reading	See Note 'Gas Correction Factor' below
95	Calibration Pressure	REAL	Get	NV	The gas pressure, in Pa, under which this calibration was performed	Default = 101325 Pa

Table 5-91 S-Gas Calibration Instance 1..n Attributes (continued)

Attrib ID	Name	Data Type	Access Rule	NV	Description	Notes
96	Calibration Temperature	REAL	Get	NV	The gas temperature, in Celsius, under which this calibration was performed	Default = 0.0 C
99	Subclass	UINT	Get	NV	Identifies a subset of additional instance attributes, services, and behaviors for the S-Gas Calibration Object	The value of this attribute is 1 = Standard T & P subclass
100	Gas Correction Type	USINT	Get	NV	The Gas Correction Method this calibration utilizes	See Note 'Gas Correction Type' below
101	Customer Full Scale	REAL	Set	NV	A user configurable attribute to rescale the Full Scale value of this calibration object	See Note 'Customer Full Scale' below
170	Bin ID	INT	Get	NV	Configurable on a per customer basis.	Intended to be used as a aid in tracking Brooks Instrument to Customer Part Number assignments.
171	Gas Table Revision	UINT	Get		Revision of the supported Gas Table.	Starts at 1 and increases with later revisions in whole number increments.

5.13.1.1. Note: Gas Standard Number

The Gas Standard Number as defined by SEMI publication SEMI E52-0298, "Practice for Referencing Gases Used in Digital Mass Flow Controllers."

5.13.1.2. Note: Gas Correction Factor

This correction factor is used to correct for the sensor value if this calibration instance was calibrated using a calibration gas that is different from the gas this calibration instance represents.

Example: If this gas calibration instance represents a Hydrogen calibration, but the calibration was performed using Nitrogen, a gas correction factor is used to correct for property differences between Hydrogen and Nitrogen.

5.13.1.3. Note: Gas Correction Type

The SLA7000 Series MFC-RT supports 4 types of sensor correction methods to linearize the sensor signal. This attribute indicates the method being employed for this calibration instance.

Table 5-92 Gas Correction Type

Attribute Value	Correction Method	Description
0	None	No correction method employed. The flow value reported is a raw, non-linearized signal.
1	Empirical	
2	Linear Gas Factor	
3	Tru-Cal TM	Employs the Brooks Instrument Tru-Cal TM method of sensor linearization

5.13.1.4. Note: Customer Full Scale

This attribute provides a means to rescale the Full Scale value of this calibration instance. By default, it will equal the Full Scale[6] attribute.

NOTE:

There is no limitation on changing this attribute. It is recommended that the customer consult with a Brooks Instrument service representative or engineer about their particular application before changing this attribute.

5.13.2. Services

Table 5-93 S-Gas Calibration Instance 0 Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single

Table 5-94 S-Gas Calibration Instance 1..n Services

Service Code	Service Name	Service Description	Details
0x0E	Get Attribute Single	Returns the contents of the specified attribute	Appendix E: Get Attribute Single
0x10	Set Attribute Single	Sets the contents of the specified attribute with the value passed with this service	Appendix E: Set Attribute Single
0x4B	Get All Instances	Returns all S-Gas Calibration Instance objects	Get All Instances

5.13.2.1. Service Details**5.13.2.1.1. Get All Instances***Table 5-95 Get All Instances Arguments*

Parameter Name	Data Type	Required	Parameter Value	Semantics
NONE				

Table 5-96 Get All Instances Response

Parameter Name	Data Type	Required	Parameter Value	Description
Size of List	UINT	Y		Specifies the number of elements in the following ARRAY
List of Gas Calibrations	ARRAY of:	Y		Supported List. This list is an array of structures
	STRUCT of:			
Calibration Instance ID	UINT			S-Gas Calibration Object Instance ID
Gas Standard Number	UINT			Gas Standard Number
Sensor Instance ID	UINT			Valid Sensor Instance

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

6. Troubleshooting

Problem	Possible Causes
Scanner is actively scanning the network, but the NET LED is flashing green	The MAC ID of the device is not programmed in the scan list of the scanner or does not match a MAC ID already programmed in the scanner
Scanner is actively scanning the network, but the NET LED on the device alternates between solid green state for a short time, then flashing green state for a short time.	Produce/Consume I/O data size mismatch. The I/O data sizes programmed in the scanner is different from the Produce/Consume I/O data size in the device
When power is applied to the device network communications are disrupted	The Power Supply for the network is undersized to handle the additional load, causing the power supply to "droop" The baud rate setting on the device does not match the network baud rate.
When power is applied to the device the NET LED and MOD LED goes solid red	The MAC ID of the device is the same as the MAC ID of another device on the network. The Baud Rate switch setting on the device does not match the network baud rate. The device was forced off the bus because of communications error (a.k.a. Bus Off condition). If the problem persists, contact Brooks service.
When power is applied to the device the NET LED remains off	The device is the only device connected on the network.
The NET LED is flashing red	The I/O connection is timed out.
The device never comes out of Self-Test (MOD LED continually flashes red/green).	Cycle power to the device. If problem persists, contact Brooks service.
The MOD LED is solid RED	An internal fault in the device was detected. Cycle power to the device. If the problem persists, contact Brooks service.
When power is applied to the device both LED's continually cycle through the power-on LED test (each LED will cycle red then green).	An internal fault has occurred in the device on power-up. Contact Brooks service.
A setpoint value is being sent to the device, but the MFC-RT fails control flow (i.e. no actuator movement, low or no flow indication)	Check Data Units for the Sensor Object and Controller Object. Make sure the Data Units for both match and that they configured to the desired values. If a CYC or COS I/O connection is the only established I/O Connection the device must be forced to the Executing state by a S-Device Supervisor Object Start service via Explicit messaging.

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

7. Appendix**7.1. Appendix A - Assembly Object Detail**

The following table details each of the Assembly Objects supported by the MFC-RT. The DeviceNet specification defines Input and Output relative to the network (i.e. The data being PRODUCED from the device as an INPUT into the network or the data being CONSUMED the device is an OUTPUT from the network).

Table 7-1 Summary Table of Input Assemblies

Instance ID	Data Description	Size (bytes)	Data Type
1	Flow	2	INT
2	Status, Flow	3	INT
3	Status, Flow, Valve	5	INT
4	Status, Flow, Setpoint	5	INT
5	Status, Flow, Setpoint, Valve	7	INT
6	Status, Flow, Setpoint, Actuator Override, Valve	8	INT
13	Flow	4	REAL
14	Status, Flow	5	REAL
15	Status, Flow, Valve	9	REAL
16	Status, Flow, Setpoint	9	REAL
17	Status, Flow, Setpoint, Valve	13	REAL
18	Status, Flow, Setpoint, Actuator Override, Valve	14	REAL
100	Status, Flow, Pressure, Valve, Active Instance	8	INT
101	Status, Flow, Pressure, Valve, Active Instance	14	REAL

Table 7-2 Summary Table of Output Assemblies

Instance ID	Data Description	Size (bytes)	Data Type
7	Setpoint	2	INT
8	Actuator Override, Setpoint	3	INT
19	Setpoint	4	REAL
20	Actuator Override, Setpoint	5	REAL
102	Setpoint, Active Instance	3	INT
103	Setpoint, Active Instance	5	REAL

7.2. Assembly Details*Table 7-3 Input Assembly 1*

Assembly Instance	1		
Data Size	2 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Flow	
	Byte 1		

Table 7-4 Input Assembly 2

Assembly Instance	2		
Data Size	3 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	
	Byte 1	Flow	
	Byte 2		

Table 7-5 Input Assembly 3

Assembly Instance	3		
Data Size	5 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3	Valve	[0x32-1-6]
	Byte 4		

Table 7-6 Input Assembly 4

Assembly Instance	4		
Data Size	5 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3	Setpoint	[0x33-0-101]
	Byte 4		

Table 7-7 Input Assembly 5

Assembly Instance	5		
Data Size	7 bytes		
Type	Input		
Definition of Bytes		Description	EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3	Setpoint	[0x33-0-101]
	Byte 4		
	Byte 5	Valve	[0x32-1-6]
	Byte 6		
	Byte 7		

Table 7-8 Input Assembly 6

Assembly Instance	6		
Data Size	8 bytes		
Type	Input		
Definition of Bytes		Description	EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3	Setpoint	[0x33-0-101]
	Byte 4		
	Byte 5	Actuator Override	[0x32-1-5]
	Byte 6	Valve	[0x32-1-6]
	Byte 7		

Table 7-9 Output Assembly 7

Assembly Instance	7		
Data Size	2 bytes		
Type	Output		
Definition of Bytes	Description		EPATH
	Byte 0	Setpoint	
	Byte 1		

Table 7-10 Output Assembly 8

Assembly Instance	8		
Data Size	3 bytes		
Type	Output		
Definition of Bytes	Description		EPATH
	Byte 0	Actuator Override	
	Byte 1	Setpoint	
	Byte 2		

Table 7-11 Input Assembly 13

Assembly Instance	13		
Data Size	4 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Flow	
	Byte 1		
	Byte 2		
	Byte 3		

Table 7-12 Input Assembly 14

Assembly Instance	14		
Data Size	5 bytes		
Type	Input		
Definition of Bytes		Description	EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		

Table 7-13 Input Assembly 15

Assembly Instance	15		
Data Size	9 bytes		
Type	Input		
Definition of Bytes		Description	EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		
	Byte 5	Valve	[0x32-1-6]
	Byte 6		
	Byte 7		
	Byte 8		

Table 7-14 Input Assembly 16

Assembly Instance	16		
Data Size	9 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		
	Byte 5	Setpoint	[0x33-0-101]
	Byte 6		
	Byte 7		
	Byte 8		

Table 7-15 Input Assembly 17

Assembly Instance	17		
Data Size	13 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		
	Byte 5	Setpoint	[0x33-0-101]
	Byte 6		
	Byte 7		
	Byte 8		
	Byte 9	Valve	[0x32-1-6]
	Byte 10		
	Byte 11		
	Byte 12		

Table 7-16 Input Assembly 18

Assembly Instance	18		
Data Size	14 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		
	Byte 5	Setpoint	[0x33-0-101]
	Byte 6		
	Byte 7		
	Byte 8		
	Byte 9	Actuator Override	[0x32-1-5]
	Byte 10	Valve	[0x32-1-6]
	Byte 11		
	Byte 12		
	Byte 13		

Table 7-17 Output Assembly 19

Assembly Instance	19		
Data Size	4 bytes		
Type	Output		
Definition of Bytes	Description		EPATH
	Byte 0	Setpoint	[0x33-0-101]
	Byte 1		
	Byte 2		
	Byte 3		

Table 7-18 Output Assembly 20

Assembly Instance	20		
Data Size	5 bytes		
Type	Output		
Definition of Bytes		Description	EPATH
	Byte 0	Actuator Override	[0x32-1-5]
	Byte 1	Setpoint	[0x33-0-101]
	Byte 2		
	Byte 3		
	Byte 4		

Table 7-19 Input Assembly 100

Assembly Instance	100		
Data Size	8 bytes		
Type	Input		
Definition of Bytes		Description	EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3	Pressure	[0x31-2-6]
	Byte 4		
	Byte 5	Valve	[0x32-1-6]
	Byte 6		
	Byte 7	Active Instance	[0x33-0-100]

Table 7-20 Input Assembly 101

Assembly Instance	101		
Data Size	14 bytes		
Type	Input		
Definition of Bytes	Description		EPATH
	Byte 0	Status	[0x30-1-12]
	Byte 1	Flow	[0x31-1-6]
	Byte 2		
	Byte 3		
	Byte 4		
	Byte 5	Pressure	[0x31-2-6]
	Byte 6		
	Byte 7		
	Byte 8		
	Byte 9	Valve	[0x32-1-6]
	Byte 10		
	Byte 11		
	Byte 12		
	Byte 13	Active Instance	[0x33-0-100]

Table 7-21 Output Assembly 102

Assembly Instance	102		
Data Size	3 bytes		
Type	Output		
Definition of Bytes	Description		EPATH
	Byte 0	Setpoint	[0x33-0-101]
	Byte 1		
	Byte 2	Active Instance	[0x33-0-100]

Table 7-22 Output Assembly 103

Assembly Instance	103		
Data Size	5 bytes		
Type	Output		
Definition of Bytes	Description		EPATH
	Byte 0	Setpoint	[0x33-0-101]
	Byte 1		
	Byte 2		
	Byte 3		
	Byte 4	Active Instance	[0x33-0-100]

7.3. Appendix B - Data Type Definitions

The following table list DeviceNet data types used throughout this manual and in the DeviceNet specification. The column C/C++ Encoding is given as a comparative common example reference.

Table 7-23 Data Types

Data Type	Size (bytes)	Description	Range	C/C++ Keyword
BOOL	1	A true/false represented as 0 = false and 1 = true	0 and 1	bool
SINT	1	An 8-bit signed integer value	-128 to 127	char
USINT	1	An 8-bit unsigned integer value	0 to 255	unsigned char
INT	2	A 16-bit signed integer value	-32768 to 32767	short int
UINT	2	A 16-bit unsigned integer value	0 to 65535	unsigned short int
DINT	4	A 32-bit signed integer value	-2147483648 to 2147483647	int
UDINT	4	A 32-bit unsigned integer	0 to 4294967296	unsigned int
REAL	4	An IEEE single precision floating point number	3.4E38 to -3.4E38	float
DREAL	8	An IEEE double precision floating point number		Long
ENGUNIT	1	An enumerated value representing an engineering unit of measure	4096 - 65535	N/A
BYTE	1	An 8-bit Bitfield	N/A	N/A
SHORT STRING	Up to 128 bytes	A character array where the first byte is the number of characters in the array, and the subsequent bytes contain the ASCII characters. This is not a NULL terminated string.	N/A	N/A

7.4. Appendix C – Data Units*Table 7-24 Volumetric Flow Units*

Description	Symbol	Units Code	
		Decimal	Hex
Counts	-	4097	0x1001
Percent	%	4103	0x1007
Standard Cubic Centimeter per Minute	SCCM	5120	0x1400
Standard Liter per Minute	SLM	5121	0x1401
Cubic Foot per Minute	CFM	5122	0x1402
Cubic Meter per Second	m3/s	5125	0x1405
Liter per Second	L/s	5126	0x1406
Milliliter per Second	mL/s	5127	0x1407
Gallon per Second	GPS	5128	0x1408
Gallon per Minute	GPM	5129	0x1409
Gallon per Hour	GPH	5130	0x140A

Table 7-25 Mass Flow Units

Description	Symbol	Units Code	
		Decimal	Hex
Counts	-	4097	0x1001
Percent	%	4103	0x1007
Kilogram per Second	kg/s	5124	0x1404
Pound per Second	lb/s	5131	0x140B
Pound per Minute	lb/min	5132	0x140C
Pound per Hour	lb/hr	5133	0x140D
Milligrams per Minute	mg/M	5134	0x140E
Grams per Minute	g/M	5135	0x140F
Kilograms per Hour	kg/H	5136	0x1410

Table 7-26 Pressure Units

Description	Symbol	Units Code	
		Decimal	Hex
Counts	-	4097	0x1001
Percent	%	4103	0x1007
Pascal	Pa	4873	0x1309
Kilopascal	kPa	4874	0x130A
Bar	bar	4871	0x1307
Millibar	mbar	4872	0x1308
Torr	torr	4865	0x1301
Milli-Torr	mtorr	4866	0x1302
Atmosphere	atm	4875	0x130B
Pounds per square inch un-referenced or differential pressure	psi	4864	0x1300
Grams per Square Centimeter	g/cm ²	4876	0x130C
Inches of Water	inH ₂ O	4870	0x1306
Inches of Mercury	inHg	4868	0x1304
Mill-Meters of Mercury	mmHg	4867	0x1303

Table 7-27 Pressure Units

Description	Symbol	Units Code	
		Decimal	Hex
Counts	-	4097	0x1001
Percent	%	4103	0x1007

7.5. Appendix D - LED Flash Codes

The following tables assume power has been applied to the network and the device has been properly connected to the network.

Table 7-28 NET LED Flash Codes

Flash Code	Description
Off	The device is the only node on the network
Flashing Green	Baud Rate and MAC ID are configured correctly. The device recognizes the network but no connection has been made to the device
Solid Green	A Connection has been established to the device
Flashing Red	An I/O Connection to the device has timed out
Solid Red	The Baud Rate Switch is set to a different baud rate than the network OR The MAC ID of the device is identical to another node on the network OR The device has gone Bus Off, indicating network communication errors.

Table 7-29 MOD LED Flash Codes

Flash Code	Description
Flashing Red-Green	The device is in the Self-Test mode
Solid Green	All self-tests have passed. No faults have been detected
Flashing Red	A recoverable fault has been detected or the device has been commanded into the Abort state
Solid Red	An unrecoverable fault has occurred

7.6. Appendix E – Service Summary and Details*Table 7-30 Get Attribute Single Service Parameters*

Parameter Name	Data Type	Required	Description	Default
Attribute ID	USINT	Y	The attribute ID of the attribute to be read.	None

Table 7-31 Success Response Data

Return Value	Data Type	Description
Attribute Value	The Data Type of the Attribute being read	

Table 7-32 Set Attribute Single Service Parameters

Parameter Name	Data Type	Required	Description	Default
Attribute ID	USINT	Y	The attribute ID of the attribute to be read.	None
Attribute Value	(Equivalent to the data type of the Attribute)	Y	The value to which the attribute will be set	None

Table 7-33 Success Response Data

Return Value	Data Type	Description
NO SUCCESS RESPONSE DATA		

7.7. Appendix F - State

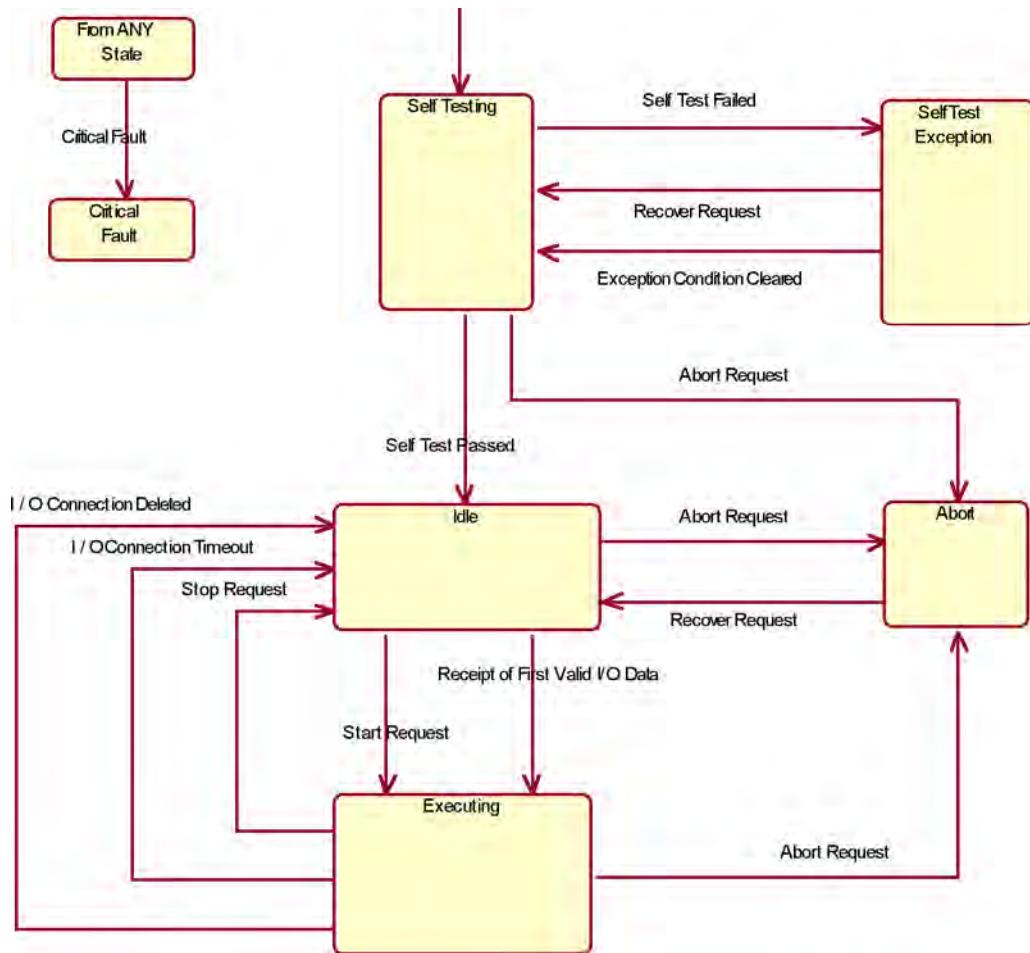


Figure 7-1 S-Device Supervisor State Machine Diagram

Brooks DeviceNet MFC-RTs

Table 7-34 S-Device Supervisor State Event Matrix

EVENT	STATE					
	Idle	Self-Testing	Self-Test Exception	Executing	Abort (Recoverable Fault)	Critical Fault
Power Applied	-	Default Entry Point: Device performs its Self-Test Application Process	-	-	-	Transition to SELF-TESTING
Self-Test Passed	Not Applicable	Transition to IDLE	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Self-Test Failed	Not Applicable	Set appropriate Exception Status Bits and Transition to SELF-TEST EXCEPTION	Not Applicable	Not Applicable	Not Applicable	Not Applicable
Exception Condition Cleared	Not Applicable	Not Applicable	Set appropriate Exception Status Bits and Transition to SELF-TESTING	Not Applicable	Not Applicable	Not Applicable
Critical Fault	Transition to CRITICAL FAULT	Transition to CRITICAL FAULT	Transition to CRITICAL FAULT	Transition to CRITICAL FAULT	Transition to CRITICAL FAULT	Ignore Event
Reset Request	Transition to SELF-TESTING	Restart SELF-TESTING	Transition to SELF-TESTING	Transition to SELF-TESTING	Transition to SELF-TESTING	Ignore Event
Start Request	Transition to EXECUTING	Error OSC ¹	Error OSC ¹	Error AIRS ²	Error OSC ¹	Ignore Event
Stop Request	Error AIRS ²	Error OSC ¹	Error OSC ¹	Transition to IDLE	Error OSC ¹	Ignore Event
Abort Request	Transition to ABORT	Transition to ABORT	Error OSC ¹	Transition to ABORT	Error AIRS ²	Ignore Event
Recover Request	Error OSC ¹	Restart SELF-TESTING	Transition to SELF-TESTING	Error OSC ¹	Transition to IDLE	Ignore Event
Perform Diagnostics Request	Transition to SELF-TESTING	Restart SELF-TESTING	Transition to SELF-TESTING	Transition to SELF-TESTING	Perform all device diagnostics test.	Ignore Event
Connection Timeout	Ignore Event	Ignore Event	Ignore Event	Transition to IDLE	Ignore Event	Ignore Event

¹ Error OSC = Error Response "Object State Conflict" (Code 0C_{hex})² Error AIRS = Error Response "Already in Requested Mode/State" (Code 0B_{hex})

Table 7-34 S-Device Supervisor State Event Matrix (continued)

EVENT	STATE					
	Idle	Self-Testing	Self-Test Exception	Executing	Abort (Recoverable Fault)	Critical Fault
Receipt of First Valid I/O Data	Transition to EXECUTING	Ignore Event	Ignore Event	Normal Response	Ignore Event	Ignore Event
I/O Connection Deleted	Ignore Event	Ignore Event	Ignore Event	Transition to IDLE	Ignore Event	Ignore Event

*THIS PAGE WAS
INTENTIONALLY
LEFT BLANK*

8. Glossary

This section is intended as a brief overview of DeviceNet terminology used throughout this manual.

Assembly

An Assembly is a Class that defines a collection of EPATH(s). This collection allows multiple attributes to be virtually accessed all at once. Each instance of an Assembly defines a unique set of EPATH(s).

Example:

The movement of data in an I/O type Connection is defined by the Produce and Consume Path attributes (see EPATH). Only one EPATH can be assigned to each of these attributes, thus limiting the amount of data that can be moved through an I/O type Connection. The solution to move more data through the I/O type Connection is to assign the Produce and Consume EPATH attributes of the Connection to "point" to an Assembly, which in turn contains multiple EPATH's.

Attribute

A Parameter or Data Item that may be read or written and is used for the purpose of configuration or is used to obtain information.

Example:

The attribute Data Units defines the engineering units flow will be reported in. The attribute Value indicates the current flow through the device. Attributes can be read/write or read only.

Baud Rate

The data rate, or speed, that the device will communicate. Setting the Baud Rate switch found on the top cover of the SLA7000 Series MFC-RT will configure this. The choices are 125k, 250k, and 500k.

COS

The Change-of-State (COS) I/O connection is an extension of the Cyclic I/O connection. The M/S COS I/O Connection establishes a data exchange between a Master and Slave devices whereby the device will produce a message when a change in value of the I/O data has been detected. At a minimum, the device will produce a message at a frequency equivalent to the EPR (see Cyclic) if no change in I/O data was detected.

Class

A logical collection of related Attributes that define a particular function and/or behavior.

Example:

The class S-Analog Sensor contains information about configuring a sensor, the current status of the sensor, and/or the current value of what is being sensed.

Cyclic

The M/S Cyclic I/O Connection establishes a data exchange between Master and Slave devices whereby the device produces an I/O message periodically at a frequency defined by the EPR for the connection.

Example:

If the EPR for the Cyclic I/O Connection is set to 500 msec, the device will produce a message every 500 msec. If so configured, the Master can respond with an acknowledge message.

Connection

A connection is a logical link between two devices by which messages are transferred. A device can have 1 or more simultaneous Connections. In most typical applications, data is exchanged using 1 Explicit Connection and 1 I/O Connection. The DeviceNet specification has defined a pre-configured set of Connections referred to as the Master/Slave (M/S) Connection Set.

Device Profile

A specification that defines a set of DeviceNet objects that uniquely represents a particular device of that type or class. The device profile can further define attributes, services, assemblies, etc. that a device must support to be considered part of that type or class of device. These profiles are found in the ODVA specification, Vol. 1. The SLA7000 Series MFC-RT conforms to the vendor-specific device profile.

EDS

The Electronic Data Sheet (EDS) is a specially formatted text description for a device that describes the I/O characteristics and configurable parameters that are accessible via the DeviceNet network. EDS files can be read by configuration software used to configure DeviceNet networks (ex: RsNetworx from Allen-Bradley)

EPATH (formerly known as PATH)

An EPATH is a unique identifier (sometimes referred to as a pointer) comprised of a Class ID, an Instance ID, and an Attribute ID. Some Classes have EPATH attributes that point to a particular data item. An example of this would be the Connection Class that contains two attributes, Produce Path and Consume Path. These attributes define where incoming data is sent to, and outgoing data comes from. I/O Connections make use of these two particular attributes.

Expected Packet Rate (EPR)

The EPR is an attribute in the Connection Class that defines the maximum amount of time (in msec) messages should be received by the Connection (implementation of this value is dependent upon the Connection type, Explicit or I/O, but the behavior is the same in all Connection types). If the time between received messages for that connection exceeds the EPR, the Connection times out. This may result in the Connection being released by the device.

Explicit Connection

An Explicit Connection dictates a request and response exchange between two devices. The device sending the request must get a response from the device receiving the request message. Embedded in the Explicit Message is information about the Class, Instance, Attribute, Service, and any service data needed to process the message. As a result, processing of Explicit Messages generally takes longer than I/O messaging. This is why Explicit Connections are typically used for commissioning/configuration.

I/O Connection

I/O Connections are used for the exchange of data only. How a device processes the data and/or responds with data via an I/O Connection is defined within the Produce and Consume Path attributes of the I/O Connection instance (See EPATH and Assembly above).

Instance

An instance of a Class is a particular invocation of a Class (sometimes referred to as an Object). An Instance of a Class is unique in describing the behavior for a particular kind of object. Each instance of the class contains the same set of attributes defined by the class. The uniqueness of the instance is defined by the attribute values.

Example:

Assume that a device contains two sensors, one to measure flow, the other to measure temperature. To access information about one or the other sensor, two Instances of the class *S-Analog Sensor* class would need to exist. Each sensor would have the same attribute set because they were both created from the class S-Analog Sensor, but the values in each attribute set would be unique to the sensor to describe flow or to describe temperature.

Example:

The class Connection contains information about configuring a Connection. With most kinds of DeviceNet devices, multiple Connections are established within a device to exchange information. In most cases one Explicit type Connection is created to configure the device, another I/O type Connection is created to transfer larger amounts of data. Each type of Connection is created from the Connection class. Each Connection has unique information in its Attribute set that defines the behavior of the Connection et. al. an Explicit type Connection or an I/O type Connection.

MAC ID

The Media Access Control Identifier, more commonly known as the network address of the device. Setting the MAC ID switches found on the top cover of the SLA7000 Series MFC-RT will configure this address. The range of addresses is 0 to 63.

Master/Slave

Master/Slave refers to the relationship between one controlling device (Master) and one or more subordinate devices (Slaves). This is a typical application of a DeviceNet network where the Master has the capability to establish Connections with more than one Slave. The (Master) then sends to each Slave control data and receives from each (Slave) device status and/or operational data. An example would be a (Master) device sending a setpoint to one or more mass flow controllers (Slaves), and each controller would respond with flow data.

M/S Polled I/O Connection

The M/S Polled I/O Connection establishes a data exchange between Master and Slave devices whereby the Master device sends an I/O message with 0 or more data to a Slave device, and the Slave device must respond with 0 or more data bytes.

Polling

A request/response method of exchanging data.

Safe State (Safe Mode)

A operational mode or state that is considered “safe” whereby the normal controller process is shut down and mechanical and sensing mechanisms are placed in a safe condition.

Service

A service is a pre-defined action that a Class provides. The most commonly used services are used to configure the device such as Get Attribute (0x0E) or Set Attribute (0x10). Other types of services may directly affect the behavior of a Class (or Object) such as Reset (0x5), Stop (0x6), or Start (0x7). There are many more services not listed here and each Class specifies which Services it supports.

Scanning

A technique of exchanging data with devices on a network whereby the Master device (scanner) polls each device on a network sequentially, continuing through the list of all devices connected to the network before starting the process again.

Brooks DeviceNet MFC-RTs

LIMITED WARRANTY

Seller warrants that the Goods manufactured by Seller will be free from defects in materials or workmanship under normal use and service and that the Software will execute the programming instructions provided by Seller until the expiration of the earlier of twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller.

Products purchased by Seller from a third party for resale to Buyer ("Resale Products") shall carry only the warranty extended by the original manufacturer.

All replacements or repairs necessitated by inadequate preventive maintenance, or by normal wear and usage, or by fault of Buyer, or by unsuitable power sources or by attack or deterioration under unsuitable environmental conditions, or by abuse, accident, alteration, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer's expense.

Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller.

BROOKS LOCAL AND WORLDWIDE SUPPORT

Brooks Instrument provides sales and service facilities around the world, ensuring quick delivery from local stock, timely repairs and local based sales and service facilities.

Our dedicated flow experts provide consultation and support, assuring successful applications of the Brooks flow measurement and control products.

Calibration facilities are available in local sales and service offices. The primary standard calibration equipment to calibrate our flow products is certified by our local Weights and Measures Authorities and traceable to the relevant international standard.

START-UP SERVICE AND IN-SITU CALIBRATION

Brooks Instrument can provide start-up service prior to operation when required.

For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this services can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standard.

CUSTOMER SEMINARS AND TRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users and maintenance persons. Please contact your nearest sales representative for more details.

HELP DESK

In case you need technical assistance,

Americas	+(1) 888-554-FLOW
Europe	+(31) 318 549-290 Within Netherlands 0318-549-290
Asia	+(81) 3-5633-7100

Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

TRADEMARKS

Adobe Acrobat..... Adobe Systems, Inc.
Brooks Brooks Instrument, LLC
DeviceNet..... Open DeviceNet Vendors Association, Inc.
Labview National Instrument, Inc.
ODVA..... Open DeviceNet Vendors Association, Inc.

Brooks Instrument
407 West Vine Street
P.O. Box 903
Hatfield, PA 19440-0903 USA
T (215) 362-3700
F (215) 362-3745
E-Mail BrooksAm@EmersonProcess.com
www.BrooksInstrument.com

Brooks Instrument
Neonstraat 3
6718 WX Ede, Netherlands
T 31-318-549-300
F 31-318-549-309
E-Mail BrooksEu@EmersonProcess.com

Brooks Instrument
1-4-4 Kitasuna Koto-Ku
Tokyo, 136-0073 Japan
T 011-81-3-5633-7100
F 011-81-3-5633-7101
E-Mail BrooksAs@EmersonProcess.com

BROOKS
INSTRUMENT